2,397 research outputs found

    3D CFD Modeling of a Supercritical Bottom Rack Intake

    Get PDF
    Compact intake structures are used for diverting turbulent supercritical flow on steep catchments in the hinterland of the urban area of Hong Kong to an underground flood diversion system through a number of vortex dropshafts. Bottom racks are placed at the entrance of the intake to exclude debris from entering the system. The rack bars interact with the supercritical inflow and creates a highly turbulent air-water mixture. This paper presents a three-dimensional (3D) computational fluid dynamics (CFD) modeling study to predict the complex flow details and air concentration of the bottom rack intake structure, using the volume-of-fluid (VOF) technique. Numerical simulations are conducted with different inflow rates and bottom rack bar shapes. The water depth, velocity and air concentration agree well with experimental measurement. Model results show that the rack interception induces an energy loss and increase the flow depth above the rack. The rack interception also gives rise to a sheet jet beneath the rack and results in air entrainment. In the rack chamber, the flow consists of a wall jet that impinges on a spiral circulation of aerated flow, inducing significant turbulence and air entrainment. The average air concentration in the rack ranges from 20% - 50% and decreases with increasing discharge. The air concentration in the chamber appears to be little affected by the presence of bottom rack or the shape of rack

    Magnetic domain evolution in permalloy mesoscopic dots

    Get PDF
    Permalloy (Ni80Fe20) squares (30 nm thick and w mu m wide; 1 less than or equal to w less than or equal to 200 mu m) and circular disks (30 nm thick and r mu m diameter; 1 less than or equal to r less than or equal to 200 mu m) prepared on a GaAs (100) substrate were observed in both their demagnetized and remanent states by magnetic force microscopy (MFM) associated with non-contact atomic force microscopy (NC-AFM). The squares (2 less than or equal to w mu m) exhibited conventional closure domains and the corner plays a very important role in creating new walls. The circular disks, on the other hand, formed either vortex domain (5 less than or equal to r less than or equal to 20 mu m) or multi-domain (50 less than or equal to r mu m) states, The magnetization rotation is observed by MFM to change according to the size and shape of the elements, The MFM observations are supported by micromagnetic calculations which confirm the effect of the corner on the domain wall formation

    Tau neutrino magnetic moments from the Super-Kamiokande and ν\nu e-scattering data

    Get PDF
    Combined results on νμ→ντ\nu_{\mu}\to \nu_{\tau} oscillations and νe\nu e-scattering from the Super-Kamiokande and LAMPF experiments, respectively, limit the Dirac ντ\nu_{\tau} diagonal magnetic moment to μντ<1.9×10−9μB\mu_{\nu_{\tau}} < 1.9\times 10^{-9} \mu_{B}. For the scheme with 3 Majorana neutrinos the LAMPF results allow the limitation of effective ντ\nu_{\tau} magnetic moment to μντ<7.6×10−10μB\mu_{\nu_{\tau}} < 7.6 \times 10^{-10}\mu_{B}. The moments in the scheme with additional Majorana light sterile neutrinos as well as experiments on stimulated radiative neutrino conversion are also discussed.Comment: 12 pages, To appear in Phys. Lett.

    Avalanches and the Renormalization Group for Pinned Charge-Density Waves

    Get PDF
    The critical behavior of charge-density waves (CDWs) in the pinned phase is studied for applied fields increasing toward the threshold field, using recently developed renormalization group techniques and simulations of automaton models. Despite the existence of many metastable states in the pinned state of the CDW, the renormalization group treatment can be used successfully to find the divergences in the polarization and the correlation length, and, to first order in an ϵ=4−d\epsilon = 4-d expansion, the diverging time scale. The automaton models studied are a charge-density wave model and a ``sandpile'' model with periodic boundary conditions; these models are found to have the same critical behavior, associated with diverging avalanche sizes. The numerical results for the polarization and the diverging length and time scales in dimensions d=2,3d=2,3 are in agreement with the analytical treatment. These results clarify the connections between the behaviour above and below threshold: the characteristic correlation lengths on both sides of the transition diverge with different exponents. The scaling of the distribution of avalanches on the approach to threshold is found to be different for automaton and continuous-variable models.Comment: 29 pages, 11 postscript figures included, REVTEX v3.0 (dvi and PS files also available by anonymous ftp from external.nj.nec.com in directory /pub/alan/cdwfigs

    Ferromagnetic/III-V semiconductor heterostructures and magneto-electronic devices

    Get PDF
    The interface magnetic and electronic properties of two Fe/III-V semiconductor systems, namely Fe/GaAs and Fe/InAs, grown at room temperature have been studied. A "magnetic interface", which is essential for the fabrication of magneto-electronic (ME) devices, was realized in both Fe/GaAs and Fe/InAs systems with suitable substrate processing and growth conditions. Furthermore, Fe/InAs was shown to have favorable interface electronic properties as Fe forms a low resistance ohmic contact on InAs. Two prototypes of ME device based on Fe/InAs are also discussed

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    One-Dimensional Extended States in Partially Disordered Planar Systems

    Full text link
    We obtain analytically a continuum of one-dimensional ballistic extended states in a two-dimensional disordered system, which consists of compactly coupled random and pure square lattices. The extended states give a marginal metallic phase with finite conductivity σ0=2e2/h\sigma_{0}=2e^2/h in a wide energy range, whose boundaries define the mobility edges of a first-order metal-insulator transition. We show current-voltage duality, H∥/TH_{\parallel}/T scaling of the conductivity in parallel magnetic field H∥H_{\parallel} and non-Fermi liquid properties when long-range electron-electron interactions are included.Comment: 4 pages, revtex file, 3 postscript file

    Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes

    Full text link
    We consider the problem of `discrete-time persistence', which deals with the zero-crossings of a continuous stochastic process, X(T), measured at discrete times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n, where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D, is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta T) and conclude that experimental measurements of persistence for smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of a randomly accelerated particle or random walker. We extend the matrix method developed by us previously [Phys. Rev. E 64, 015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and the one-dimensional random acceleration problem. We also consider `alternating persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure

    Conductance fluctuations and boundary conditions

    Full text link
    The conductance fluctuations for various types for two-- and three--dimensional disordered systems with hard wall and periodic boundary conditions are studied, all the way from the ballistic (metallic) regime to the localized regime. It is shown that the universal conductance fluctuations (UCF) depend on the boundary conditions. The same holds for the metal to insulator transition. The conditions for observing the UCF are also given.Comment: 4 pages RevTeX, 5 figures include

    On search for a new light gauge boson from π0(η)→γ+X\pi^{0}(\eta)\to\gamma + X decays in neutrino experiments

    Full text link
    It is shown that a new light gauge boson XX which might be produced in the decays of pseudoscalar mesons π0(η)→γ+X\pi^{0}(\eta)\to\gamma + X could be effectively searched for in neutrino experiments via the Primakoff effect, in the process of X+Z→π0(η)+ZX + Z\to \pi^{0}(\eta) + Z conversion in the external Coulomb field of a nucleus. An estimate of the X→π0X\to \pi^{0} conversion rate for the NOMAD neutrino detector at CERN is given.Comment: 9 pages, 2 figures, LaTex. Submitted to Phys. Lett.
    • …
    corecore