42 research outputs found

    Central limit theorems for long range dependent spatial linear processes

    Get PDF
    Central limit theorems are established for the sum, over a spatial region, of observations from a linear process on a d d-dimensional lattice. This region need not be rectangular, but can be irregularly-shaped. Separate results are established for the cases of positive strong dependence, short range dependence, and negative dependence. We provide approximations to asymptotic variances that reveal differential rates of convergence under the three types of dependence. Further, in contrast to the one dimensional (i.e., the time series) case, it is shown that the form of the asymptotic variance in dimensions d > 1 critically depends on the geometry of the sampling region under positive strong dependence and under negative dependence and that there can be non-trivial edge-effects under negative dependence for d > 1. Precise conditions for the presence of edge effects are also given

    Central limit theorems for long range dependent spatial linear processes

    Full text link

    Condensation Transitions in Two Species Zero-Range Process

    Full text link
    We study condensation transitions in the steady state of a zero-range process with two species of particles. The steady state is exactly soluble -- it is given by a factorised form provided the dynamics satisfy certain constraints -- and we exploit this to derive the phase diagram for a quite general choice of dynamics. This phase diagram contains a variety of new mechanisms of condensate formation, and a novel phase in which the condensate of one of the particle species is sustained by a `weak' condensate of particles of the other species. We also demonstrate how a single particle of one of the species (which plays the role of a defect particle) can induce Bose-Einstein condensation above a critical density of particles of the other species.Comment: 17 pages, 4 Postscript figure

    Singular Scaling Functions in Clustering Phenomena

    Full text link
    We study clustering in a stochastic system of particles sliding down a fluctuating surface in one and two dimensions. In steady state, the density-density correlation function is a scaling function of separation and system size.This scaling function is singular for small argument -- it exhibits a cusp singularity for particles with mutual exclusion, and a divergence for noninteracting particles. The steady state is characterized by giant fluctuations which do not damp down in the thermodynamic limit. The autocorrelation function is a singular scaling function of time and system size. The scaling properties are surprisingly similar to those for particles moving in a quenched disordered environment that results if the surface is frozen.Comment: 8 pages, 3 figures, Invited talk delivered at Statphys 23, Genova, July 200

    ON THE JACKKNIFE-AFTER-BOOTSTRAP METHOD FOR DEPENDENT DATA AND ITS CONSISTENCY PROPERTIES

    No full text

    GRID for variable selection in high dimensional regression

    No full text

    Bulk Density of Coal

    No full text
    The influence of various factors such as moisture, grain size, and addition of oil on the bulk density of coal is described. There is a progressive reduction in the bulk density as the moisture content of coal increases, followed by an increase in bulk density which however never reaches the values for the dry coals. This optimum moisture content for a minimum bulk density is different for different coals. The higher the percentage of ash in the coal, the higher is the bulk density at any moisture content
    corecore