5 research outputs found

    Geometrical and electrical properties of NTC polycrystalline thermistors vs. Changes of sintering parameters

    Get PDF
    NTC thermistor powder was made of a Mn, Ni, Fe and Co oxide mixture calcinated at 1050°C / 60 min. The powder was milled in a ball mill down to an average particle diameter of 0.9 μm. Small disc shaped pills of the powder obtained were made by pressing with a pressure of 2.5 MPa. The pills were sintered in the temperature range of 900-1400 °C for 30-240 min. The volume and specific volume resistivity change were measured as a function of sintering conditions. Microstructure development was observed using a SEM microscope. Using the results obtained, optimization of sintering parameters was performed in order to determine optimal electrical properties of the selected thermistor composition

    The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions

    No full text
    A nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site. One of the strategies used for this purpose is PEGylation. The aim of this research was assessing the impact of the oil phase selection, soybean or fish oil mixtures with medium chain triglycerides, on the physicochemical characteristics and injectability of curcumin-loaded PEGylated nanoemulsions. Electron paramagnetic resonance spectroscopy demonstrated the structural impact of the oil phase on the stabilizing layer of nanoemulsions, with a more pronounced stabilizing effect of curcumin observed in the fish oil nanoemulsion compared to the soybean oil one. The design of the experiment study, employed to simultaneously assess the impact of the oil phase, different PEGylated phospholipids and their concentrations, as well as the presence of curcumin, showed that not only the investigated factors alone, but also their interactions, had a significant influence on the critical quality attributes of the PEGylated nanoemulsions. Detailed physicochemical characterization of the NEs found all formulations were appropriate for parenteral administration and remained stable during two years of storage, with the preserved antioxidant activity demonstrated by DPPH and FRAP assays. In vitro release studies showed a more pronounced release of curcumin from the fish oil NEs compared to that from the soybean oil ones. The innovative in vitro injectability assessment, designed to mimic intravenous application, proved that all formulations tested in selected experimental setting could be employed in prospective in vivo studies. Overall, the current study shows the importance of oil phase selection when formulating PEGylated nanoemulsions. © 2022 by the authors

    Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method

    No full text
    The chemical synthesis of nickel manganite powder was performed by a complex polymerization method (CPM). The obtained fine nanoscaled powders were uniaxially pressed and sintered at different temperatures: 1000-1200 degrees C for 2 h, and different atmospheres: air and oxygen. The highest density was obtained for the sample sintered at 1200 degrees C in oxygen atmosphere. The energy for direct band gap transition (Eg) calculated from the Tauc plot decreases from 1.51 to 1.40 eV with the increase of the sintering temperature. Indentation experiments were carried out using a three-sided pyramidal (Berkovich) diamond tip, and Young's modulus of elasticity and hardness of NTC (negative temperature coefficient) ceramics at various indentation depths were calculated. The highest hardness (0.754 GPa) and elastic modulus (16.888 GPa) are exhibited by the ceramics sintered at highest temperature in oxygen atmosphere
    corecore