21 research outputs found

    Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia

    Get PDF
    Background Type 1 hyperlipoproteinemia is a rare autosomal recessive disorder most often caused by mutations in the lipoprotein lipase (LPL) gene resulting in severe hypertriglyceridemia and pancreatitis. Objectives The aim of this study was to identify novel mutations in the LPL gene causing type 1 hyperlipoproteinemia and to understand the molecular mechanisms underlying the severe hypertriglyceridemia. Methods Three patients presenting classical features of type 1 hyperlipoproteinemia were recruited for DNA sequencing of the LPL gene. Pre-heparin and post-heparin plasma of patients were used for protein detection analysis and functional test. Furthermore, in\ua0vitro experiments were performed in HEK293\ua0cells. Protein synthesis and secretion were analyzed in lysate and medium fraction, respectively, whereas medium fraction was used for functional assay. Results We identified two novel mutations in the LPL gene causing type 1 hyperlipoproteinemia: a two base pair deletion (c.765_766delAG) resulting in a frameshift at position 256 of the protein (p.G256TfsX26) and a nucleotide substitution (c.1211\ua0T\ua0>\ua0G) resulting in a methionine to arginine substitution (p.M404\ua0R). LPL protein and activity were not detected in pre-heparin or post-heparin plasma of the patient with p.G256TfsX26 mutation or in the medium of HEK293\ua0cells over-expressing recombinant p.G256TfsX26 LPL. A relatively small amount of LPL p.M404\ua0R was detected in both pre-heparin and post-heparin plasma and in the medium of the cells, whereas no LPL activity was detected. Conclusions We conclude that these two novel mutations cause type 1 hyperlipoproteinemia by inducing a loss or reduction in LPL secretion accompanied by a loss of LPL enzymatic activity

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    Macrosocial determinants of population health in the context of globalization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55738/1/florey_globalization_2007.pd

    Oral Administration of Oleuropein and Its Semisynthetic Peracetylated Derivative Prevents Hepatic Steatosis, Hyperinsulinemia, and Weight Gain in Mice Fed with High Fat Cafeteria Diet

    No full text
    The high consumption of olive tree products in the Mediterranean diet has been associated with a lower incidence of metabolic disorders and cardiovascular diseases. In particular, the protective effects of olive oil have been attributed to the presence of polyphenols such as oleuropein (Ole) and its derivatives. We have synthesized a peracetylated derivative of Ole (Ac-Ole) which has shown in vitro antioxidant and growth-inhibitory activity higher than the natural molecule. In this study, male C57BL/6JOlaHsd mice were fed with a standard (std), cafeteria (caf) diet, and caf diet supplemented with Ole (0.037 mmol/kg/day) and Ac-Ole (0.025 mmol/kg/day) for 15 weeks. We observed a significant reduction in the caf diet-induced body weight gain and increase of abdominal adipose tissue. Also, Ole and Ac-Ole prevented the development of hepatic steatosis. Finally, Ole and Ac-Ole determined a lower increase of HDL and LDL-cholesterol levels and corrected caf diet-induced elevation of plasma glucose concentrations by improving insulin sensitivity. The observed beneficial properties of Ole and Ac-Ole make these compounds and in particular Ac-Ole promising candidates for a potential pharmaceutic use in metabolic disorders. \ua9 2015 Saverio Massimo Lepore et al
    corecore