11 research outputs found

    EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI)

    Get PDF
    Pulmonary hypertension is highly heterogeneous and despite treatment advances it remains a life shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility practice remains variable, dependent in part on imaging availability and expertise. This statement summarises current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected pulmonary hypertension. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists and computational modelers. Section editors generated a series of summary statements 1based on a review of the literature and professional experience and following consensus review, a diagnostic algorithm and fifty five statements were agreed. The diagnostic algorithm and summary statements, emphasise the key role and added value of imaging in the diagnosis and assessment of pulmonary hypertension and highlight areas requiring further research

    Supplementary Material for: Plasma Endothelin-1 and Vascular Endothelial Growth Factor Levels and Their Relationship to Hemodynamics in Idiopathic Pulmonary Fibrosis

    No full text
    <b><i>Background:</i></b> Pulmonary hypertension (PH) is associated with a poor prognosis in idiopathic pulmonary fibrosis (IPF). Endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) are important in both fibrosis and vascular remodeling. <b><i>Objectives:</i></b> We sought to determine the relationship between ET-1 and VEGF levels and hemodynamics in patients with IPF. We hypothesized that higher levels of ET-1 and VEGF would be associated with higher pulmonary artery pressures (PAP) and pulmonary vascular resistance (PVR) in patients with IPF. <b><i>Methods:</i></b> We performed a cross-sectional analysis of 52 adults with IPF enrolled in a prospective cohort with available clinical data, platelet-free plasma, and hemodynamics. ET-1 and VEGF levels were measured via immunoassay. The associations of ET-1 and VEGF with PAP and PVR were examined using generalized additive models adjusted for age, gender, race/ethnicity, and forced vital capacity (% predicted). <b><i>Results:</i></b> Sixteen of 52 (30.8%) had PH (mean PAP ≥25 mm Hg). After multivariable adjustment, higher ET-1 levels were significantly associated with higher systolic (p = 0.01), diastolic (p = 0.02), and mean (p = 0.01) PAP and possibly higher PVR (p = 0.09). There were no significant associations between VEGF levels and hemodynamics. <b><i>Conclusions:</i></b> Higher levels of ET-1 were associated with higher PAP and possibly higher PVR in participants with IPF. In a subgroup of patients, ET-1 may be a contributor to pulmonary vascular disease burden in IPF

    The Right Ventricle Explains Sex Differences in Survival in Idiopathic Pulmonary Arterial Hypertension

    No full text
    Background: Male sex is an independent predictor of worse survival in pulmonary arterial hypertension (PAH). This finding might be explained by more severe pulmonary vascular disease, worse right ventricular (RV) function, or different response to therapy. The aim of this study was to investigate the underlying cause of sex differences in survival in patients treated for PAH. Methods: This was a retrospective cohort study of 101 patients with PAH (82 idiopathic, 15 heritable, four anorexigen associated) who were diagnosed at VU University Medical Centre between February 1999 and January 2011 and underwent right-sided heart catheterization and cardiac MRI to assess RV function. Change in pulmonary vascular resistance (PVR) was taken as a measure of treatment response in the pulmonary vasculature, whereas change in RV ejection fraction (RVEF) was used to assess RV response to therapy. Results: PVR and RVEF were comparable between men and women at baseline; however, male patients had a worse transplant-free survival compared with female patients (P = .002). Although male and female patients showed a similar reduction in PVR after 1 year, RVEF improved in female patients, whereas it deteriorated in male patients. In a mediator analysis, after correcting for confounders, 39.0% of the difference in transplant-free survival between men and women was mediated through changes in RVEF after initiating PAH medical therapies. Conclusions: This study suggests that differences in RVEF response with initiation of medical therapy in idiopathic PAH explain a signifi cant portion of the worse survival seen in men. © 2014 American College of Chest Physicians
    corecore