52 research outputs found

    Measuring the Deployment Hiccups of DNSSEC

    Get PDF
    On May 5, 2010 the last step of the DNSSEC deployment on the 13 root servers was completed. DNSSEC is a set of security extensions on the traditional DNS protocol, that aim in preventing attacks based on the authenticity and integrity of the messages. Although the transition was completed without major faults, it is not clear whether problems of smaller scale occurred. In this paper we try to quantify the effects of that transition, using as many vantage points as possible. In order to achieve that, we deployed a distributed DNS monitoring infrastructure over the PlanetLab and gathered periodic DNS lookups, performed from each of the roughly 300 nodes, during the DNSSEC deployment on the last root name server. In addition, in order to broaden our view, we also collected data using the Tor anonymity network. After analyzing all the gathered data, we observed that around 4% of the monitored networks had an interesting DNS query failure pattern, which, to the best of our knowledge, was due to the transition

    New Anonymity Notions for Identity-Based Encryption

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIdentity-based encryption is a very convenient tool to avoid key management. Recipient-privacy is also a major concern nowadays. To combine both, anonymous identity-based encryption has been proposed. This paper extends this notion to stronger adversaries (the authority itself). We discuss this new notion, together with a new kind of non-malleability with respect to the identity, for several existing schemes. Inter- estingly enough, such a new anonymity property has an independent application to password-authenticated key exchange. We thus come up with a new generic framework for password-authenticated key exchange, and a concrete construction based on pairings

    Anonymous and Transparent Gateway-based Password-Authenticated Key Exchange

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIn Asiacrypt 2005, Abdalla et al. put forward the notion of gateway-based password- authenticated key exchange (GPAKE) protocol, which allows clients and gateways to establish a common session key with the help of an authentication server. In addition to the semantic security of the session key, their solution also provided additional security properties such as password pro- tection with respect to malicious gateways and key privacy with respect to curious authentication servers. In this paper, we further pursue this line of research and present a new and stronger se- curity model for GPAKE schemes, combining all above-mentioned security properties. In addition to allowing a security proof for all these security properties, the new security model has also other advantages over the previous one such as taking into account user corruptions. After describing the new security model, we then present a new variant of the GPAKE scheme of Abdalla et al. with similar efficiency. Like the original scheme, the new scheme is also transparent in that it does not differ significantly from a classical 2-PAKE scheme from the point of view of a client. Finally, we also show how to add client anonymity with respect to the server to the basic GPAKE scheme by using private information retrieval protocols

    One-time-password-authenticated key exchange

    Get PDF
    To reduce the damage of phishing and spyware attacks, banks, governments, and other security-sensitive industries are deploying one-time password systems, where users have many passwords and use each password only once. If a single password is compromised, it can be only be used to impersonate the user once, limiting the damage caused. However, existing practical approaches to one-time passwords have been susceptible to sophisticated phishing attacks. ---------- We give a formal security treatment of this important practical problem. We consider the use of one-time passwords in the context of password-authenticated key exchange (PAKE), which allows for mutual authentication, session key agreement, and resistance to phishing attacks. We describe a security model for the use of one-time passwords, explicitly considering the compromise of past (and future) one-time passwords, and show a general technique for building a secure one-time-PAKE protocol from any secure PAKE protocol. Our techniques also allow for the secure use of pseudorandomly generated and time-dependent passwords

    Support Vector Machine Based ICMP Covert Channel Attack Detection

    No full text

    New Security Results on Encrypted Key Exchange

    No full text
    Abstract. Schemes for encrypted key exchange are designed to provide two entities communicating over a public network, and sharing a (short) password only, with a session key to be used to achieve data integrity and/or message confidentiality. An example of a very efficient and “elegant ” scheme for encrypted key exchange considered for standardization by the IEEE P1363 Standard working group is AuthA. This scheme was conjectured secure when the symmetric-encryption primitive is instantiated via either a cipher that closely behaves like an “ideal cipher”, or a mask generation function that is the product of the message with a hash of the password. While the security of this scheme in the former case has been recently proven, the latter case was still an open problem. For the first time we prove in this paper that this scheme is secure under the assumptions that the hash function closely behaves like a random oracle and that the computational Diffie-Hellman problem is difficult. Furthermore, since Denial-of-Service (DoS) attacks have become a common threat we enhance AuthA with a mechanism to protect against them.
    • …
    corecore