
HAL Id: inria-00419152
https://hal.inria.fr/inria-00419152

Submitted on 22 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Anonymity Notions for Identity-Based Encryption
Malika Izabachène, David Pointcheval

To cite this version:
Malika Izabachène, David Pointcheval. New Anonymity Notions for Identity-Based Encryption. SCN
’08, 2008, Amalfi, Italie, Italy. pp.375–391. �inria-00419152�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50142762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00419152
https://hal.archives-ouvertes.fr


The extended abstract of this full version appeared in
Proceedings of the 6th Conference on Security and Cryptography for Networks (SCN ’08)
September 10–12, 2008, Amalfi, Italy – R. Ostrovsky Eds. Springer-Verlag, LNCS 5229, pages 375–391.

New Anonymity Notions

for Identity-Based Encryption

Malika Izabachène and David Pointcheval

Ecole Normale Supérieure – LIENS/CNRS/INRIA, France
{Malika.Izabachene,David.Pointcheval}@ens.fr

Abstract. Identity-based encryption is a very convenient tool to avoid key management. Recipient-privacy is
also a major concern nowadays. To combine both, anonymous identity-based encryption has been proposed.
This paper extends this notion to stronger adversaries (the authority itself). We discuss this new notion,
together with a new kind of non-malleability with respect to the identity, for several existing schemes. Inter-
estingly enough, such a new anonymity property has an independent application to password-authenticated
key exchange. We thus come up with a new generic framework for password-authenticated key exchange, and
a concrete construction based on pairings.

1 Introduction

Motivation. The idea of using identities instead of public keys in order to avoid the (costly) use of
certificates comes from Shamir [19]. He indeed suggested Identity-based Encryption (IBE), that would
allow a user to encrypt a message using any string, that would specify the recipient, as encryption
parameter, such that this recipient only can decrypt the ciphertext. Identity-based cryptography thus
provides this interesting feature that one does not need authenticated public keys. Key managament is
made simpler. Note however that a drawback is an authority that is required to generate the private keys
for the users, according to their identities. This authority thus has the ability to decrypt any ciphertext.
Privacy cannot be achieved with respect to this authority. Nevertheless, privacy of the plaintext is not the
unique goal in cryptography, with encryption schemes. Privacy of the recipient may also be a requirement.
Such a key-privacy notion has already been defined in the public-key setting in [3]. It has more recently
been extended to the identity-based setting in [1], under the notion of anonymity. However, the security
model in this IBE setting still trusts the authority. Whereas trusting the authority is intrinsic for privacy
of the plaintext, it is not for the privacy of the recipient: a stronger anonymity notion is possible, with
respect to the authority, but is it achievable for practical IBE?

For efficiency reasons, the use of Key Encapsulation Mechanisms KEM have been shown as a preferable
approach [21]. It consists in generating an ephemeral key and an encrypted version of the latter. The
ephemeral key is thereafter used with a Data Encryption Method DEM to encrypt the message. In
such a context, we are interested in the semantic security of the ephemeral key, and the anonymity of
the recipient. In the identity-based context, Bentahar et al. [7] defined Identity-based Key Encapsulation
Mechanisms IB-KEM. An anonymity notion with respect to the authority would then be an interesting
feature. Interestingly enough, this notion of anonymity with respect to the authority might have side
applications. One of them is PAKE [6], for password-authenticated key exchange. Such a protocol allows
two players to establish a private channel, using a short secret as a sole authentication means. The latter
is thus subject to exhaustive search, but such a short secret is very convenient for human beings.

Related Work. The idea of identity-based encryption is due to Shamir [19], in 1984. The first goal
was to simplify public key management. However, the first practical solutions appeared in 2001 only [10,
15]. Thereafter, many schemes have been proposed, based on pairing, factoring and lattices. Since such
schemes were dealing with encryption, the main security notion was the semantic security [17].

c© Springer-Verlag 2008.



Even if recipient-anonymity had already been addressed for public-key encryption [3] in 2001, anonym-
ity for IBE has been proposed recently by Abdalla et al. [1], but as a simple extension of the previous
public-key setting definition. In 2006, Gentry [16] and Boyen and Waters [12] presented the first anonymous
IBE schemes without random oracles.

Our contributions. As already noticed in [1], anonymity might have some side applications to search-
able encryption. In this paper, we deal with anonymity for IB-KEM, even with respect to the authority,
the so-called Key Anonymity with respect to the Authority and denoted KwrtA-Anonymity: we first provide
a formal security model, and then we discuss this security notion with existing schemes. We also consider
a new non-malleability notion for the identity, that we call identity-based non-malleability : if one encrypts
a message (or a key) for user U , one has no idea about the value obtained by another user U ′, whatever
the relation between U and U ′ (or the identities) is.

Thereafter, we show that these security notions can also have side applications to password-authentic-
ated key exchange. Such a KwrtA-anonymous and identity-based non-malleability IB-KEM scheme can
indeed be plugged into a password-authenticated two-party key exchange protocol, in the same vein as
the IPAKE construction [14] did with trapdoor hard-to-invert group isomorphisms. Our security result
holds in a stronger security model than usual (with an adaptive selection of passive and active attacks,
as in [18]), but the construction still assumes the random-oracle model [5], as in [14].

Eventually, we provide an IB-KEM, that is both KwrtA-anonymous and identity-based non-malleable,
in addition to the full-identity semantic security, against chosen-plaintext adversaries. This thus leads to
a new password-authenticated two-party key exchange protocol.

2 Anonymous Identity-Based Encryption

Anonymity for public-key encryption schemes has first been introduced by Bellare et al. [3], under the
key privacy security notion, and has been extended to identity-based encryption by Abdalla et al. [1].

In these papers, anonymity meant that even if the adversary chooses a message and two identities
(or two public keys), and the challenger encrypts the message with one of the identities (or keys), the
adversary cannot guess which one has actually been involved in the computation. This notion is quite
strong for public-key encryption, but not that strong in the identity-based setting since it does not capture
anonymity with respect to the authority that knows the master secret key, and even chooses the public
parameters PK.

Unfortunately, the previous definitions cannot be trivially extended: the adversary can easily break
anonymity if he knows the expected plaintext, and just hesitates between two identities, since he can
decrypt any ciphertext. Anonymity can only be expected against the server if the plaintexts follow a non-
trivial distribution. Since we will deal with key-encapsulation mechanisms, this non-trivial distribution is
already implicit for the ephemeral keys.

This enhanced security notion will be called Key Anonymity with respect to the Authority and de-
noted KwrtA-Anonymity. This section defines precisely this notion for identity-based key encapsulation
mechanisms.

2.1 Identity-Based Encryption and Key Encapsulation Mechanisms

We first review the definitions of identity-based encryption, and more specifically of identity-based key
encapsulation mechanisms [7]. In the following, we assume that identities are bit strings in a dictionary
Dic.

2



Definition 1 (Identity-Based Encryption). An IBE scheme is specified by four algorithms:

SetupIBE(1λ). Takes as input a security parameter λ. It outputs the public parameters PK, as well as a
master secret key MK.

ExtractIBE(MK, ID). Takes as input the master secret key MK, and the identity ID of the user. It outputs
the user’s decryption key usk.

EncryptIBE(PK, ID,M). Takes as input the public parameter PK, the identity of the recipient, and a
message M to be encrypted. It outputs a ciphertext.

DecryptIBE(usk, c). Takes as input the user’s decryption key and a ciphertext c. It outputs the decryption
or ⊥, if the ciphertext is not valid.

In [20] Shoup proposed a more efficient framework for public-key encryption, the so-called KEM/DEM,
for key encapsulation mechanism/data encapsulation method. More recently, Bentahar et al. [7] extended
this concept to the identity-based setting, and therefore proposed some constructions of IB-KEM seman-
tically secure. We will use the following formalism:

Definition 2 (Identity-Based Key Encapsulation Mechanism).
An IB-KEM scheme is specified by the following four algorithms:

SetupIBK(1λ). Takes as input a security parameter λ. It outputs the public parameters PK, as well as a
master secret key MK.

ExtractIBK(MK, ID). Takes as input the master secret key MK and an identity ID of the user. It outputs
the user’s decryption key usk.

EncapsIBK(PK, ID). Takes as input the public parameters PK and the identity of the recipient. It outputs
a pair (K, c), where K is the ephemeral session key and c is the encapsulation of that key.

DecapsIBK(usk, c). Takes as input the user’s decryption key usk and a ciphertext c. It outputs the key K
encapsulated in c or ⊥, if the ciphertext is not valid.
We also formally define the function DecapsIBK(ID, c), which takes as input a user identity ID and a
ciphertext c. It first extracts the decryption key usk associated to ID, and then decapsulates c under
usk.

We first review the notion of semantic security for IB-KEM, then we deal with anonymity, and an
additional security notion, that we call identity-based non-malleability.

2.2 Security Notions

We directly describe the security notions for identity-based key encapsulation mechanisms, but one can
easily derive them for identity-based encryption.

Semantic Security. The semantic security formalizes the privacy of the key. The security game, in the
strongest security model (i.e. chosen-ciphertext and full-identity attacks) is the following one:

Setup : The challenger runs the SetupIBK algorithm on input 1λ to obtain the public parameters PK,
and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues the following queries:
– Extract query on input an ID: The challenger runs the Extract algorithm on input (MK, ID), and

provides the associated decryption key usk.
– Decaps query on input an ID and a ciphertext c: The challenger first extracts the decryption key

for ID, and then decrypts the ciphertext c with this key. It outputs the resulting ephemeral key,
or ⊥.

3



A outputs a target identity ID∗, on which no Extract-query has been asked.
Challenge: The challenger randomly gets (K0, c

∗)← EncapsIBK(PK, ID∗) and (K1, c
′)← EncapsIBK(PK, ID∗).

It flips a bit b and outputs (Kb, c
∗).

Guess stage: The adversary can issue the same queries as in the Find stage, with the restriction that
no Extract-query on input ID∗ and no Decaps-query on input (ID∗, c∗) can be asked. The adversary
finally outputs its guess b′ ∈ {0, 1} for b.

We then define the advantage of A in breaking the Semantic Security of an IB-KEM scheme with its
ability in deciding whether it actually received the real ephemeral key associated to c∗ or a random one.
We denote this security notion by IND, which can thereafter be combined with various oracle accesses,
in order to define selective/full-identity and chosen plaintext/ciphertext attacks. More formally, we want
the advantage below, to be negligible:

Advind
IBK(A) = 2× Pr

b









(PK,MK)← SetupIBK(1λ); (ID∗, s)← A1(PK)
(K0, c

∗)← EncapsIBK(PK, ID∗);
(K1, c

′)← EncapsIBK(PK, ID∗)
b′ ← A2(Kb, c

∗, s) : b = b′









− 1.

In the following, we will need a very weak notion, that we call weak semantic security, during which
attack that adversary has to choose in advance the target identity ID∗ (selective-ID), and has no oracle
access at all: no Decaps queries, and no Extract queries.

Anonymity. Anonymity against IBE means that for a chosen plaintext, and given a ciphertext c en-
crypted under ID0 or ID1 of adversary’s choice, the adversary should not be able to decide which identity
has been involved. With an appropriate DEM encryption scheme, the key encapsulation anonymity ver-
sion can be defined as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public parameters PK, and the master
secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues Extract and Decaps queries. A outputs two identities
ID0, ID1, on which no Extract-query has been asked before.

Challenge: The challenger randomly selects b ∈ {0, 1} and gets an encapsulated pair (K∗, c∗) under
IDb. It returns (K∗, c∗).

Guess stage: The adversary can issue the same queries as in the Find stage, subject to the restriction
that no Extract-query is allowed to be asked on ID0 or ID1, and no Decaps-query can be asked on
input (ID0, c

∗), or (ID1, c
∗). It finally outputs its guess b′ ∈ {0, 1} for b.

We say that an IB-KEM scheme provides key-anonymity if the advantage of A in deciding which identity
is actually involved in the above experiment is negligible:

Advanon
IBK (A) = 2× Pr

b









(PK,MK)← SetupIBK(1λ);
(ID0, ID1, s)← A1(PK)

(K∗, c∗)← EncapsIBK(PK, IDb);
b′ ← A2(K

∗, c∗, s) : b = b′









− 1.

As already noticed, this anonymity notion does not provide any security with respect to the authority,
since the above security notion assumes that the adversary has no idea about MK.

KwrtA-Anonymity. We therefore enhance the previous security model, in order to consider the author-
ity as a possible adversary. However, it is clear that given (K∗, c∗), the authority can check the involved
ID. We thus truncate the input to c∗ only:

4



Find stage: The adversary generates (valid, see below) public parameters PK. A outputs PK and two
identities ID0, ID1.

Challenge : The challenger randomly selects b ∈ {0, 1}, and generates a ciphertext for IDb, (K∗, c∗) ←
EncapsIBK(PK, IDb). It outputs c∗.

Guess stage: The adversary finally outputs its guess b′ ∈ {0, 1}.

We say that an IB-KEM scheme provides Key Anonymity with respect to the Authority (denoted KwrtA-

Anonymity) if the advantage of A in deciding which identity is involved in the experiment above is
negligible:

Advkwrta−anon
IBK (A) = 2× Pr

b





(PK, ID0, ID1, s)← A1(1
λ) s.t. ValidIBK(PK)

(K∗, c∗)← EncapsIBK(PK, IDb);
b′ ← A2(c

∗, s) : b = b′



− 1.

We emphasis that in the above experiment, the adversary has to generate valid public parameters
PK. Note that against KwrtA-Anonymity (vs. anonymity), on the one hand, the new adversary may know
the master key MK, but on the other hand, it must make its decision from c∗ only. Therefore, these two
security notions are not really comparable. Furthermore, since the adversary generates PK, one has to be
able to check the honest generation. In some cases, PK is a truly random value, without redundancy; in
some other cases, appropriate redundancy should be proven. We thus define an additional algorithm:

ValidIBK(PK). Takes as input the public parameters PK, and checks whether they satisfy the required
properties.

Identity-based Non-Malleability. In the application we will study later, a new security notion for
identity-based encryption will appear. It basically states that when one sends a ciphertext to a user ID,
one has no idea how user ID′ will decrypt it, even for identities chosen by the adversary. This means
that when one computes an encapsulation, it provides an ephemeral session key with a unique recipient,
and not several secret keys with several partners. We define the identity-based non-malleability game as
follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public parameters PK, and the master
secret key MK. It publishes PK.

Attack: The adversary A adaptively issues Extract and Decaps queries, and outputs a ciphertext c, and
two pairs (K0, ID0), and (K1, ID1).

The adversary wins this game if the two formal equalities hold:

K0 = DecapsIBK(ID0, c) and K1 = DecapsIBK(ID1, c).

We thus define the success of A in breaking the Identity-based Non-Malleability of an IB-KEM scheme
by:

Succid-nm
IBK (A) = Pr





(PK,MK)← SetupIBK(1λ);
(c, (K0, ID0), (K1, ID1))← A(PK) :

K0 = DecapsIBK(ID0, c) ∧K1 = DecapsIBK(ID1, c)



 .

Note that this security notion is for a normal user, and not for the authority itself. Indeed, it would clearly
be incompatible with KwrtA-Anonymity.

5



3 Anonymous and Non-Malleable IB-KEM

Since the first practical IBE schemes, new features, and new efficient/security criteria have been defined.
An efficient anonymous IBE with a tight security proof in the standard model is one of the open problems.
In this section, we first review some candidates, and then propose a new scheme that satisfies all the above
requirements: semantic security, various anonymity notions and identity-based non-malleability.

3.1 Backgrounds on Pairings

Let G1 and G2 be two cyclic groups of large prime order p. We suppose that these two groups are equipped
with a pairing, i.e. a non-degenerated and efficiently computable bilinear map ê : G1 ×G2 → GT . In the
following, we use multiplicative notation for G1 and G2: ê(ga

1 , gb
2) = ê(g1, g2)

ab, for all a, b ∈ Zp, and any
g1 ∈ G1 and g ∈ G2. For the sake of generality, we consider the asymmetric case, where G1 6= G2, but
most of the schemes below also apply in the symmetric setting, where G1 = G2.

3.2 Diffie-Hellman Assumptions

The co-CDH-Problem. Let g1 and g2 two generators of G1 and G2 respectively. We define the co-Diffie-
Hellman value co-CDHg1,g2(u), for u = gx

1 ∈ G1, the element v = gx
2 ∈ G2.

The co-CDHG1,G2 problem can be formalized as follows: given g1, u ∈ G1 and g2 ∈ G2, output v =
co-CDHg1,g2(u). We define the success probability of A in breaking the co-CDHG1,G2-problem as:

Succco−cdh
G1,G2

(A) = Pr
[

g1
R
← G1; g2

R
← G2, x

R
← Zp; v ← A(g1, g2, g

x
1 ) : v = gx

2

]

.

Note that when G1 = G2 = G, the co-CDHG,G-problem is exactly the usual Computational Diffie-Hellman
Problem in G, which can still be difficult. However, the decisional version is easy, granted the pairing.

We can indeed define the co-DHG1,G2-language of the quadruples (a, b, c, d) ∈ G1×G2×G1×G2, such
that d = co-CDHa,b(c).

The Common co-CDH-Problem. Given two elements, it is simple to complete a co-CDH-quadruple
(g1, g2, u, v). However, finding two such quadruples with constraints may not be simple. We thus define
a new problem, called the Common co-CDH-Problem, as follows: Given g, h ∈ G, and V ∈ GT , output
k0 6= k1 ∈ Zp, K0,K1 ∈ GT and a common c ∈ G, such that:

(ghk0 , V, c,K0), (ghk1 , V, c,K1) ∈ co-DHG,GT
.

We define the success of A in breaking the Common-co-CDHG,ê-Problem as:

Succcommon-co-cdh
G,ê (A) = Pr





g, h ∈ G;V ∈ GT ; (c, k0, k1,K0,K1)← A(g, h, V ) :
k0 6= k1 ∧ (ghk0 , V, c,K0) ∈ co-DHG,GT

∧(ghk1 , V, c,K1) ∈ co-DHG,GT





The CBDH-Problem. Diffie-Hellman variants have been proposed in groups equipped with pairings, and
namely in the symmetric case: let g be a generator of G. We define the Bilinear Diffie-Hellman value of
gx, gy , gz, for x, y, z ∈ Zp, in base g, the element V = ê(g, g)xyz ∈ GT .

The CBDHG,ê problem can be formalized as follows: given g,X = gx, Y = gy, Z = gz ∈ G, output
V = ê(g, g)xyz . We define the success probability of A in breaking the CBDHG,ê-problem as:

Succcbdh
G,ê (A) = Pr

[

g
R
← G;x, y, z

R
← Zp;V ← A(g, gx, gy, gz) : v = ê(g, g)xyz

]

.

6



The DBDH-Problem. The decisional version can then be intractable too: given g,X = gx, Y = gy, Z =
gz ∈ G, and V ∈ GT , decide whether V = ê(g, g)xyz , or not. We define the advantage of A in breaking
the DBDHG,ê-problem as:

Advdbdh
G,ê (A) = Pr

[

g
R
← G;x, y, z

R
← Zp;V = ê(g, g)xyz : 1← A(g, gx, gy, gz , V )

]

− Pr
[

g
R
← G;x, y, z

R
← Zp;V

R
← GT : 1← A(g, gx, gy , gz, V )

]

.

The Successive-Power Version. For our scheme to be semantically secure, we will need a stronger
variant of the above DBDH problem, given access to a sequence of powers, similarly to the Strong Diffie-
Hellman problem [9]: More precisely, given g, gx, gy, gz , and gz/x, gz/x2

, . . . , gz/xq

, as well as V , from some
V ∈ GT , where q is a parameter, decide whether V = ê(g, g)xyz , or a random element. We define the
advantage of A in breaking the q-SP-DBDHG,ê-assumption as:

Adv
q-spdbdh
G,ê (A) = Pr

[

g
R
← G;x, y, z

R
← Zp;V = ê(g, g)xyz :

1← A(g, gx, gy, gz , gz/x, · · · , gz/xq

, V )

]

− Pr

[

g
R
← G;x, y, z

R
← Zp;V

R
← GT :

1← A(g, gx, gy, gz , gz/x, · · · , gz/xq

, V )

]

.

It is clear that such a sequence of powers should not provide much information to the adversary. And
thus, for any polynomial-time adversary A, the above advantage is negligible. We provide the proofs that
our two new problems are intractable for generic adversaries in the Appendix B.

3.3 Previous IBE Schemes

Let us review several IBE, and see which properties they satisfy. For the sake of simplicity, for all of
them, we review the key encapsulation mechanisms. In several schemes, we will need a deterministic map
F from identities onto the group G, possibly with parameter PK.

The Boneh-Franklin Scheme [10]. In this scheme, MK = s
R
← Zp and PK = gs. The map F (ID) is

independent of PK. This is a function onto G, modeled as a random oracle in the security analysis. The
ciphertext c = gr ∈ G corresponds to the key K = ê(F (ID),PK)r = BDHg(PK, c, F (ID)) = ê(uskID, c),
where uskID = F (ID)s = co-CDHg,F (ID)(PK) ∈ G.

It is quite similar to the ElGamal encryption, and thus the semantic security relies on the DBDHG,ê,
but against chosen-plaintext attacks only, in the random oracle model, even with access to the Extract-
query, which is similar to the Boneh-Lynn-Shacham signature [11] (secure against chosen-message attacks
under the CDHG problem).

Since the ciphertext is totally independent of the identity, this scheme is KwrtA-anonymous, in the
information-theoretical sense. Nevertheless, the basic anonymity is similar to the semantic security, and
relies on the DBDHG,ê. However, since the ciphertext does not involve the identity, it is easy to break the
identity-based non-malleability : knowing r and c = gr, one easily computes K = BDHg(PK, c, F (ID)) =
ê(F (ID),PK)r, for any ID of ones choice.

The Boneh-Boyen Scheme [8]. In this scheme, α
R
← Zp, g, g2, h

R
← G, and PK = (g, g1 = gα, g2, h), while

MK = gα
2 . The map FPK is defined by FPK(ID) = gID

1 · h. The ciphertext c = (gs, FPK(ID)s) corresponds
to the key

K = ê(g1, g2)
s = ê(c1, usk2)/ê(usk1, c2),

7



if one gets uskID = (gr,MK · FPK(ID)r), for any r
R
← Zp.

As above, the semantic security relies on the DBDHG,ê assumption, in the standard model, but against
selective-ID chosen-plaintext attacks, even with access to the Extract-query (the underlying signature
scheme is selective-forgery secure against chosen-message attacks under the CBDH assumption).

However, because of the redundancy in the ciphertext, which matches with one identity only, this
scheme is not anonymous: one just has to check, for a candidate ID, and a ciphertext c = (c1, c2), whether

(g, FPK(ID), c1, c2) is a Diffie-Hellman tuple, by ê(c1, FPK(ID))
?
= ê(c2, g). Since this attack did not need a

candidate key K, a fortiori, this scheme is not KwrtA-anonymous.
On the other hand, since the ciphertext focuses to a specific recipient, one has no idea how another

ID′ would decrypt it, because of its randomness r′ in the decryption key: for wrong user, with usk′ =
(gr′ , gα

2 FPK(ID′)r
′

), and c = (gs, FPK(ID′)s
′

) (s′ 6= s since ID′ is not the intended recipient), K ′ = K ×
Hr′ , for H 6= 1, and r′ totally random. Therefore, it is identity-based non-malleable in the information-
theoretical sense.

The Gentry Scheme [16]. In 2006, two schemes have been proposed, with provable anonymity. Gentry’s

scheme is one of them: g, h
R
← G and α

R
← Zp. The public parameters are PK = (g, g1 = gα, h) and

MK = α. The map FPK is defined by FPK(ID) = g1 · g
−ID = gα−ID. The ciphertext c = (FPK(ID)s, ê(g, g)s)

is the encapsulation of K = ê(g, h)s, and thus, setting (usk1, usk2) = (r, (hg−r)1/(α−ID)), for any r
R
← Zp,

K = ê(c1, usk2) · c2
usk1.

The scheme is semantically secure and anonymous against chosen plaintext attacks, even with access to
the Extract-query, under the truncated decisional augmented bilinear Diffie-Hellman exponent assumption
(see [16] for details).

However, the scheme is not KwrtA-anonymous, since using bilinear maps combined with the redun-
dancy inside the ciphertext provides a test for any target identity ID′, since knowing α, A can test whether

c2
α−ID′

= e(g, g)s(α−ID′) ?
= e(c1, g) = e(gs(α−ID′), g).

Since the ciphertext is specific to the recipient, A has no idea how an other ID′ decrypts c = (c1 =
FPK(ID′)s

′

, c2 = e(g, g)s), since

K ′ = ê(c1, usk′2) · c2
usk′1 = K · (ê(g, g)usk′1/ê(g, h))s−s′ ,

is a random element in GT . Thus, the scheme is identity-based non-malleable in the information-theoretical
sense.

The Boyen-Waters scheme [13]. Boyen and Waters proposed another provably anonymous scheme:

ω, t1, t2, t3 and t4
R
← Zp are set to be the master secret key and Ω = ê(g, g)t1 ·t2·ω, g, g0, g1, v1 = gt1 , v2 =

gt2 , v3 = gt3 are the public parameters PK, with g a random generator of G and g0, g1
R
← G. The map

FPK is defined by FPK(ID) = g0 · ID. To encrypt a key, one chooses a random s ∈ Zp and sets K = Ωs,
its encapsulation has the following form: c = (c0, c1, c2, c3, c4), with c0 = FPK(ID)s, c1 = vs−s1

1 , c2 = vs1
2 ,

c3 = vs−s2
3 , and c4 = vs2

4 . To decapsulate the key, one has to compute

K−1 = Ω−s = ê(g, g)−ωt1t2s

= ê(c0, usk0)× ê(c1, usk1)× ê(c2, usk2)× ê(c3, usk3)× ê(c4, usk4)

with uskID = (usk0, usk1, usk2, usk3, usk4), where:

usk0 = gr1t1t2+r2t3t4

usk1 = g−ωt2FPK(ID)−r1t2 usk2 = g−ωt1FPK(ID)−r1t1

usk3 = FPK(ID)−r2t4 usk4 = FPK(ID)−r2t3

8



for any r1, r2
R
← Zp. This scheme is semantically secure under DBDHG,ê, and anonymous under the

decision linear assumption (we do not give more details since this scheme is totally different from ours
below. The reader is refereed to [13]). However, it is not KwrtA-anonymous: since knowing the master key
and given a ciphertext c = (c0, c1, c2, c3, c4), one can decide for a target identity whether c0, c1, c2 or/and
c0, c3, c4 is a linear tuple in basis v0, v1, v2 and v0, v3, v4 respectively.

Since the key is completely independent of the identity and c0 is determined by the identity (among
other elements), the same argument than for the two previous schemes holds: it is identity-based non-
malleable in an information-theoretically sense.

Note that for all the above schemes, the public parameters consist of independent elements in appro-
priate groups. The validity check ValidIBK(PK) is thus trivial.

3.4 Our Scheme

None of the previous schemes satisfies both KwrtA-anonymity and identity-based non-malleability. In this
section, we describe our scheme, and show that it achieves all the security properties: semantic security,
anonymity, KwrtA-anonymity and identity-based non-malleability. For the sake of simplicity, we use a
symmetric pairing:.

SetupIBK. The setup algorithm chooses two random generators g, h ∈ G, and a random exponent ω ∈ Zp.
It keeps this exponent as the master key MK = ω. The corresponding system parameters are: PK =
(g, g1 = gω, h). It defines the identity-function: F (ID) = g1 · g

ID = gω+ID.
Note that, as above, the public parameters consist of independent elements in appropriate groups.
The validity check ValidIBK(PK) is thus trivial.

ExtractIBK(MK, ID). To issue a private key for identity ID, the key extraction authority computes the
private key, uskID = h1/(ω+ID).

EncapsIBK(PK, ID). In order to generate an ephemeral key with an identity ID, the algorithm chooses a
random exponent r ∈ Zp, and creates the ciphertext as: c = F (ID)r, that corresponds to the key
K = ê(g, h)r .

DecapsIBK(uskID, c). The decryption algorithm extracts the ephemeral key K from a ciphertext c by
computing: K = ê(uskID, c).

Correctness. Let us check the decryption process:

K = ê(uskID, c) = ê(h1/(ω+ID), gr(ω+ID)) = ê(h, g)r .

Semantic Security. It is worth to precise that we do not require to be able to simulate any oracle for
making use of IB-KEM schemes in the next section. The weak semantic security will be enough:

Theorem 3. The weak semantic security of our scheme (under selective-ID, chosen-plaintext and no-
identity attacks) relies on the DBDHG,ê-problem, in the standard model.

Proof. Given u, A = ua, B = ub, C = uc, and V ∈ GT the input to the DBDHG,ê-Problem, and the target
identity ID∗, we set g = A = ua, h = C = uc = gc/a, g1 = ut ·A−ID∗

= ut−aID∗

, and c = B. This implicitly

defines MK = t/a− ID∗, for a randomly chosen t
R
← Zp. Therefore, FPK(ID∗) = g1g

ID∗

= ut ·A−ID∗

·AID∗

=
ut, and the randomness r of the challenge ciphertext c = FPK(ID∗)r = utr = ub = B is r = b/t. The
corresponding encapsulated key should thus be

K = ê(h, g)r = ê(uc, ua)b/t = ê(u, u)abc/t.

By letting (V 1/t, c) be the output of the challenger, an adversary able to break the semantic security
(without Extract-queries) helps us to decide whether V is the Bilinear Diffie-Hellman value or not. ⊓⊔

9



In order to show the usual semantic security (under full-ID, but chosen-plaintext attacks), we have to
be able to simulate the Extract-oracle, which thus requires additional inputs. But first, we modify a little
bit the scheme, by using H(ID), instead of ID in the above description, where H is a random oracle [5]
onto Zp.

Theorem 4. The semantic security of our scheme (by using H(ID), instead of ID) under full-ID and
chosen-plaintext (no Decaps queries) relies on the successive-power version, in the random oracle model.

Proof. Given u, A = ua, B = ub, C = uc, Ci = C1/ai

, for i = 1, . . . , q, and V ∈ GT the input to the
q-SP-DBDHG,ê-problem, we first compute {Vi = ê(u, u)bc/ai

}i=0...q, since V0 = ê(B,C), and Vi = ê(B,Ci),

for i = 1, . . . , q. Then, we set g = A = ua and g1 = ut · A−x∗

, for randomly chosen t, x∗ R
← Zp. This

implicitly defines MK = t/a − x∗. We also choose random elements x1, . . . , xq
R
← Z

∗
p, and set P (X) =

∏

(tX + xi), a polynomial of degree q, where the number of random oracle queries is q + 1. We then set
h = CP (1/a) = ucP (1/a), which can be easily computed granted C, C1, . . . , Cq.

First, all the random oracle queries will be answered by an x∗ + xi, or x∗ (for a unique randomly
chosen query): we hope to assign x∗ to H(ID∗), the target identity, which happens with probability 1/q.
Let us assume this situation:

– By definition, as above, FPK(ID∗) = g1g
H(ID∗) = ut · A−x∗

·Ax∗

= ut;

– For all the other identities, H(IDj) = xj, and then uskj can be computed as

h1/(MK+x∗+xj) = CP (1/a)/(MK+x∗+xj) = CP (1/a)/(t/a+xj ) = CPj(1/a),

where Pj is a polynomial of degree q−1. Then uskj can be easily computed granted C, C1, . . . , Cq−1.
Hence the simulation of the Extract-oracle.

As above, the challenge ciphertext is set c = B = ub = FPK(ID∗)r for r = b/t. The corresponding
encapsulated key should thus be

K = ê(g, h)r = ê(ua, ucP (1/a))b/t = (ê(u, u)abc)P (1/a)/t.

Let us expand P (X) =
∑i=q

i=0 piX
i, and then

K = ê(u, u)abc·p0/t ×

i=q
∏

i=1

ê(u, u)bc/ai−1·pi/t =
(

ê(u, u)abc
)p0/t

×

i=q
∏

i=1

V
pi/t
i−1 .

If V = ê(u, u)abc, the correct key is V p0/t ×
∏i=q

i=1 V
pi/t
i−1 . In the random case, the same computation

leads to a totally random key (note that p0 =
∏

xi 6= 0 mod p). Then, by letting (V p0/t×
∏i=q

i=1 V
pi/t
i−1 , c) be

the output of the challenger, an adversary able to break the semantic security helps us to decide whether
V is the Bilinear Diffie-Hellman value or not. We thus break the q-SP-DBDHG,ê-problem. ⊓⊔

Anonymity. The usual anonymity notion relies on the same assumption as the semantic security. Since
the ciphertext consists of c = F (ID)r, a random element in G, whatever the identity ID. It is thus clearly
KwrtA-anonymous, in the information-theoretical sense.

Theorem 5. Our scheme is unconditionally KwrtA-anonymous.

10



Client C Server S

pw ∈ Dic pw ∈ Dic

accept← false accept← false

Valid(PK)?
S, PK
←−−−−−− (PK, MK)← Setup(λ)

(K, c)← Encaps(PK, pw)
C, c

−−−−−−→ usk← Extract(MK, pw)
K′ ← Decrypt(usk, c)

AuthS′ = H1(S, C, PK, c, pw, K)
S, AuthS
←−−−−−− AuthS = H1(S,C, PK, c, pw, K′)

AuthS
?
= AuthS′

If no error/reject
accept← true

AuthC = H2(S, C, PK, c, pw, K)

sk = H0(S, C, PK, c, pw, K)
C, AuthC
−−−−−−→ AuthC′ = H2(S, C, PK, c, pw, K′)

AuthC
?
= AuthC′

If no error/reject
accept← true

sk = H0(S, C, PK, c, pw, K)

Fig. 1. IBK-PAKE: a Password-Authenticated Key-Exchange Protocol

Idendity-based Non-Malleability. Let us consider the ciphertext c, and its decryption with respect
to IDi for i ∈ {0, 1}. In the following, ri is formally defined by c = F (IDi)

ri , and Ki = ê(g, h)ri . Thus,
the identity-based non-malleability relies on the intractability of finding c, {IDi,Ki}, with ID0 6= ID1 such
that ri = logê(g,h)(Ki) = logF (IDi)(c). This thus leads to a solution of the Common co-CDH-Problem.

Theorem 6. The identity-based non-malleability of our scheme relies on the Common co-CDH-Problem
in groups G and GT .

4 IBK − PAKE: Our PAKE Protocol

The previous sections focused on identity-based key encapsulation mechanisms, and new anonymity prop-
erties. We now show how a weakly semantically secure IB-KEM, that is both KwrtA-anonymous and
identity-based non-malleable, can be used to build a password-authenticated key exchange.

4.1 Description of our Scheme

Our new scheme is generic. It basically consists in generating the session key using this IB-KEM, under
the common password as the identity, see Figure 1. The other party can easily recover the session key.
Security notions for semantic security and perfect forward secrecy follow from the (weak) semantic security
and anonymity properties of the IB-KEM scheme.

4.2 Security Analysis

Communication Model. We assume to have a fixed set of protocol participants, and each of them can
be either a client or a server. They are all allowed to participate to several different, possibly concurrent,

11



executions of the key exchange protocol. We model this by allowing each participant an unlimited number
of instances able to initiate or participate to executions of the protocol.

In the password-based scenario, the two parties share a low-entropy secret pw which is drawn from a
small dictionary Dic. In the following, we assume that the distribution is uniform. More complex distri-
butions could be considered.

We use the security model introduced by Bellare et al. [4], improved by Abdalla et al. [2] to consider
the Real-or-Random security notion instead of the Find-then-Guess. In this model, the adversary A has
the entire control of the network, which is formalized by allowing A to ask the following query, Send(U,m),
that models A sending the message m to instance U . The adversary A gets back the response U generates
in processing the message m according to the protocol. A query Send(U, INIT) initializes the key exchange
algorithm, by activating the first player in the protocol.

From the original security model, we suppress the Execute-queries. Even if they were important to
model passive attacks vs. active attacks, we consider a stronger security model where the adversary
always uses Send-queries, either for simply forwarding a flow generated by a honest user, or for mod-
ifying/manufacturing a flow. Thereafter, if the whole transcript of an execution of the protocol turns
out to consist of forwarded flows only, this execution is then considered as a passive attack: it is similar
to an Execute-query in previous models [4]. If one flow has been modified or manufactured, the session
corresponds to an active attack.

As a consequence, in addition to the usual security model with Execute-queries, the adversary can
adaptively decide, during an execution of the protocol, whether the session will correspond to a passive
attack, or to an active one, and not from the beginning of the session only (as in [18]). An attack game
will consist of a mix of passive and active attacks, in a concurrent manner.

However, as usual, we will be essentially interested in active attacks: qactiveC and qactiveS will, respec-
tively, denote the number of active attacks in which the adversary played against the client and the server,
respectively. We want to show that qactiveC + qactiveS is an upper-bound on the number of passwords the
adversary may have tried.

Security Notions. Two main security notions have been defined for key exchange protocols. The first
is the semantic security of the key, which means that the exchanged key is unknown to anybody other
than the players. The second one is unilateral or mutual authentication, which means that either one, or
both, of the participants actually know the key. In the following, we focus on the semantic security, also
known as AKE Security.

The semantic security of the session key is modeled by an additional query Test(U). Since we are
working in the Real-or-Random scenario, this Test-query can be asked as many times as the adversary A
wants, but to fresh instances only. The freshness notion captures the intuitive fact that a session key is
not “obviously” known to the adversary. More formally an instance is said to be fresh if it has successfully
completed execution and

1. Neither it nor its partner was corrupted before the session started

2. or, the attack, on this session, was passive.

Two instances are partners if they run a key exchange protocol together. This is formally modeled by the
notion of session ID: the session ID is a string defined from the transcript (usually, it consists of the first
flows, sent and received), and two instances are partners if they share the same session IDs.

The Test-query is answered as follows: a (private) coin b has been flipped once for all at the beginning
of the attack game, if b = 1 (Real), then the actual session key sk is sent back, if b = 0 (Random), or a

12



random value is returned. Note that for consistency reasons, in the random case, the same random value
is sent to partners.

We denote the AKE advantage as the probability that A correctly guesses the value of b with its
output b′: Advake(A) = 2Pr[b = b′]− 1.

The adversary will also have access to the Corrupt-query that leaks the password: it is useful to model
the perfect forward secrecy. The latter notion means that a session key remains secret even after the
leakage of the long-term secret.

Security Result. For our protocol, we can state the following security result, which proof can be found
in the Appendix A.

Theorem 7 (AKE Security). Let us consider an Identity-Based Key Encapsulation Mechanism IBK =
(Setup,Extract,Encaps,Decaps) that is weakly semantically secure (selective-ID, chosen-plaintext attacks
and no Extract-queries), anonymous, KwrtA-anonymous, and identity-based non-malleable, then our pro-
tocol IBK-PAKE, provides semantic security and perfect forward secrecy:

Adv
ake
ibk−pake(A) ≤ 4×

qactive

N
+ negl(),

where qactive = qactiveC + qactiveS is the number of active attacks and N is the size of the dictionary.

5 Conclusion

In this paper, we have first introduced two new security notions for identity-based key encapsulation
mechanisms: the first one is an enhancement of the usual anonymity, the second one formalizes a kind on
non-malleability, with respect to the recipient identity.

Then, we proposed the first scheme that is full-ID semantically secure against chosen-message attacks,
and that achieves our new security notions.

We furthermore showed that these new security notions could be useful for identity-based schemes as
a tool: we provided a new framework for password-authenticated key exchange, with an identity-based
key encapsulation mechanism as a core sub-routine.

Acknowledgment

We would like to thank the anonymous referees for their fruitful comments. This work has been par-
tially supported by European Commission through the IST Program under Contract IST-2002-507932
ECRYPT, and by the French ANR-07-SESU-008-01 PAMPA Project.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory
Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous
IBE, and extensions. In CRYPTO 2005, LNCS 3621, pages 205–222. Springer, 2005.

2. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated key exchange in the three-
party setting. In PKC 2005, LNCS 3386, pages 65–84. Springer, 2005.

3. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In
ASIACRYPT 2001, LNCS 2248, pages 566–582. Springer, 2001.

4. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary attacks.
In EUROCRYPT 2000, LNCS 1807, pages 139–155. Springer, 2000.

13



5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM

CCS 93, pages 62–73. ACM Press, 1993.
6. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure against dictionary

attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer Society Press, 1992.
7. Kamel Bentaha, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions of identity-based and

certificateless KEMs. Journal of Cryptology, 21(2):178–199, April 2008.
8. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles. In

EUROCRYPT 2004, LNCS 3027, pages 223–238. Springer, 2004.
9. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT 2004, LNCS 3027, pages

56–73. Springer, 2004.
10. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO 2001, LNCS 2139,

pages 213–229. Springer, 2001.
11. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In ASIACRYPT 2001, LNCS 2248,

pages 514–532. Springer, 2001.
12. Dan Boneh and Brent R. Waters. Conjunctive, subset, and range queries on encrypted data. Cryptology ePrint Archive,

2006.
13. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In

CRYPTO 2006, LNCS 4117, pages 290–307. Springer, 2006.
14. Dario Catalano, David Pointcheval, and Thomas Pornin. IPAKE: Isomorphisms for password-based authenticated key

exchange. Journal of Cryptology, 20(1):115–149, January 2007.
15. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography and Coding, 8th IMA

International Conference, LNCS 2260, pages 360–363. Springer, 2001.
16. Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT 2006, LNCS 4004, pages

445–464. Springer, 2006.
17. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,

1984.
18. David Pointcheval and Sébastien Zimmer. Multi-factor authenticated key exchange. In ACNS 2008, LNCS 5037, pages

277–295. Springer, 2008.
19. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84, LNCS 196, pages 47–53. Springer,

1985.
20. Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In EUROCRYPT 2000, LNCS 1807,

pages 275–288. Springer, 2000.
21. Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption. December 2004. Final Committee Draft.

A Proof of Theorem 7

This proof goes with a sequence of games, starting from G0 which represents the real attack game (with
a mix of passive and active attacks). In all the games, we focus on the two following events:

– EvS (for semantic security). This event occurs if the adversary correctly guesses the bit b involved in
the Test-queries;

– EvA (for authentication). This event occurs if an instance accepts a session with no partner (with the
adversary).

Our goal is to estimate the probability of event EvS in the real attack game. To this aim, we modify step
by step the simulation, to end up with a trivial game the adversary cannot win. We will denote by ∆n

the difference of the probabilities of any event Ev in the game Gn and the previous one. Note that such
an event must be observable when the distance is computationally bounded, but can be any event when
the distance is statistically bounded.

Game G0: This is the real attack game. By definition, we have:

Advake
ibk−pake(A) = 2Pr[EvS0]− 1.

14



Game G1: In this game, we simulate Send-queries as shown in Figure 2. The Test-queries are answered
according to the bit b: if b = 1 (Real), then the value sk computed during the simulation is returned; if
b = 0 (Random), H′

0(S,C,PK, c) is returned, where H′
0 is a private random oracle. This is a truly random

value. But since the input is the session ID, thus satisfies the constraint that Test-queries on two partners
give the same random value, in the random case. The goal of the following games will be to make the
simulations of sk in the real and random cases identical.

Game G2: In a first step, we cancel games in which some collision appears. The former are related
to the session IDs, which collisions would be problematic, since it would lead to identical session keys to
different sessions, the latter are just for making the security analysis simpler:

– collisions on the partial trancript (S,C,PK, c).

– collisions on the output of H1,H2 and H0.

∆2 ≤
q2
H

2ℓ
+ γq2

session,

where qH is the number of hash queries, and qsession the number of sessions. We furthermore denote by
γ an upper-bound on the guessing probabilities of PK and c, and by ℓ the length of the hash function
outputs.

Game G3: In this game, we deal with sessions in which the adversary remained passive during the first
two flows. We denote by qpassive the number of such sessions. We will denote by OG the passive flows, for
Oracle-Generated. More precisely, in the following, OG(C,n), resp. OG(S, n), means that the n-th flow,
received by the client, resp. by the server, has been generated by the simulation: we thus know the random
coins, but the adversary does not.

The adversary may actively participate to the protocol during the third or fourth flows, and trying
to build a valid authenticator in the name of either the server (with AuthS) or the client (with AuthC).
Intuitively, since the adversary has no idea about the secret information, MK and K, the probability to
build valid authenticators is negligible, even if it would know the password.

We thus modify, in these sessions only (which can be determined before applying the following modifi-
cations), the way the authenticators and session keys are computed. More precisely, we replace the public
oracles Hi (for i = 0, 1, 2) by private ones H′

i (for i = 0, 1, 2), on truncated inputs: (S,C,PK, c, pw,K)
is replaced by the session ID that is public, (S,C,PK, c). We claim that such a modification cannot be
noticed by the adversary, under the semantic security of the IB-KEM scheme.

Let us first formally modify the simulation. We thereafter prove the above claim.

◮Rule S2(3)

– if ¬Corrupt ∧ OG(C, 1) ∧OG(S, 2), compute AuthS = H′
1(S,C,PK, c).

– else,
get usk← Extract(MK, pw);
decrypt the ciphertext, K ′ ← Decaps(usk, c);
compute AuthS = H1(S,C,PK, c, pw,K ′).

◮Rule C2(3)

– if ¬Corrupt ∧ OG(C, 1) ∧OG(S, 2), compute AuthS′ = H′
1(S,C,PK, c),

sk = H′
0(S,C,PK, c), and AuthC = H′

2(S,C,PK, c)
– else, compute AuthS′ = H1(S,C,PK, c, pw,K),

sk = H0(S,C,PK, c, pw,K), AuthC = H2(S,C,PK, c, pw,K)

15



S
en

d
-q

u
er

ie
s

to
C

We answer to the Send-queries to a C-instance as follows:

– A SendC(C; S, PK) query is processed according to the following rule:
◮Rule C1(1)

Get (K, c)← Encaps(PK, pw).
Answer with c.

– A SendC(C; S, AuthS)-query is processed according to the following rule:
◮Rule C2(1)

Compute AuthS′ = H1(C, S, PK, c, pw, K), sk = H0(C, S, PK, c, pw, K),
and AuthC = H2(C, S, PK, c, pw, K)

Check wether AuthS′ is equal to AuthS.
If the equality holds,

accept with session key sk, and answer with AuthC;
else reject.

– All the other cases are ignored.

S
en

d
-q

u
er

ie
s

to
S

We answer to the Send-queries to an S-instance as follows:

– A SendS(S; INIT)-query is processed according to the following rules:
◮Rule S1(1)

Get (PK, MK)← Setup(1λ).
Answer with PK.

– A SendS(S; C, c)-query is processed according to the following rules:
◮Rule S2(1)

Get usk← Extract(MK, pw);
Decapsulate the key, K′ ← Decaps(usk, c);
Compute AuthS = H1(C, S, PK, c, pw, K′).

Answer with AuthS.
– A SendS(S; C, AuthC)-query is processed according to the following rules:

◮Rule S3(1)

Compute AuthC′ = H2(C, S, PK, c, pw, K′), and sk = H0(C, S, PK, c, pw, K′)
Check wether AuthC′ is equal to AuthC.
If the equality holds,

accept with session key sk, and terminate;
Else reject.

– All the other cases are ignored.

H

For a hash-query Hn(q) (resp. H′
n(q)), such that a record (n, q, r) appears in ΛH1

(resp. ΛH′), the answer is
r. Otherwise one chooses a random element r in the appropriate range, answers with it, and adds the record
(n, q, r) to ΛH1

(resp. ΛH′).

Fig. 2. Simulation of the IBK-PAKE protocol

16



◮Rule S3(3)

– if ¬Corrupt ∧ OG(C, 1) ∧OG(S, 2) ∧OG(C, 3),
compute AuthC = H′

2(S,C,PK, c) and sk = H′
0(S,C,PK, c)

– else, compute AuthC′ = H2(S,C,PK, c, pw,K ′)
and sk = H0(S,C,PK, c, pw,K ′).

Games G3 and G2 are identical except if the adversary remarks the use of private oracles. But this
is possible if and only if A asks queries to Hi on some transcripts (S,C,PK, c), with the appropriate pair
(pw,K). We call this event AskHP (for Passive, since the adversary was passive during the first flows). In
order to estimate the probability of event AskHP, we define an auxiliary game that fills the gap between
the two games G2 and G3 with the semantic security of the IB-KEM scheme: if A can distinguish both
executions, then we can construct a selective-ID, chosen-plaintext adversary against the semantic security
of the underlying IB-KEM scheme, without any Extract-query (our previous weak semantic security
notion).

We thus suppose by contradiction that there exists A′ that can distinguish the games G3 and G2, with
non-negligeable advantage. We construct an adversary B against the semantic security of the IB-KEM
scheme.

Game G2.1: We make the modification, from game G2, for one session only, the i-th one, for i chosen
between 1 and qsession, before any corruption:

◮Rule S1(2.1)

– if this is the i-th session,
let the challenger run Setup(1λ), with the target identity pw, to get PK;

– else,
get (PK,MK)← Setup(1λ).

◮Rule C1(2.1)

– if this is the i-th session and OG(C, 1),
ask for pw to the challenger, that answers with a pair (K, c) (if d = 1,

K = K1 really corresponds to c, but if d = 0, K = K0 is independent of c).
– else,

get (K, c) ← Encaps(PK, pw).

◮Rule S2(2.1)

– if this is the i-th session, and OG(C, 1) ∧OG(S, 2),
compute AuthS = H1(S,C,PK, c, pw,K).

– else,
get usk← Extract(MK, pw);
decrypt the ciphertext, K ′ ← Decaps(usk, c);
compute AuthS = H1(S,C,PK, c, pw,K ′).

Note that in the real case (d = 1), we are exactly as in game G2. In the random case, it is clear that
the probability to ask Hi on appropriate K for this session is negligible (upper-bounded by γqH, where γ
is an upper-bound on the guessing probability for K) since no information leaks about it.

Thus,
∆3 ≤ Pr[AskHP2] ≤ qsession × Advind

IBK(t) + γqH ≤ negl().

17



Game G4: In this game, we just formally modify the simulation, but without any modification to
the view of the adversary, since we take a random ciphertext c according to the appropriate distribution,
that may depend on the password. Our goal will then be to make it independent of the password, when
there is no corruption (the flag Corrupt specifies whether the adversary got the password or not with a
corruption query). We define two distributions CPK and CPK,pw as follows:

CPK = {Encrypt(PK, pw,m) | m ∈M}, and

CPK,pw = {Encrypt(PK, pw,m) | m ∈M, pw ∈ Dic}.

◮Rule C1(4)

– if ¬Corrupt ∧ OG(C, 1), get c← CPK,pw;
– else, get (K, c)← Encaps(PK, pw).

Since K is not needed in the later flows, in the case that OG(C, 1) and OG(S, 2), this simulation does not
change anything, ∆4 = 0.

Game G5: We now make the simulation of the client, that receives an oracle-generated public key PK,
independent of the password. Our new game will be indistinguishable from the previous one, under the
KwrtA-anonymity of the underlying IB-KEM scheme.

◮Rule C1(5)

– if ¬Corrupt ∧ OG(C, 1), get c← CPK;
– else, get (K, c)← Encaps(PK, pw).

The distance between G5 and G4 is negligible except if A is able to distinguish the distribution CPK from
the distribution of CPK,pw, where pw is possibly known to the adversary, but PK has been generated by a
trusted party. Using a classical hybrid sequence of games, we can easily show that

∆5 ≤ qpassive × AdvanonIBK(t) ≤ negl().

Note that in the previous hybrid sequence of games (in game G2.1), we had to start the simulation specific
to the i-th hybrid game before knowing whether it would be a passive session or not, hence the factor
qsession. In this hybrid sequence, the modification starts only when we already know that it is a passive
session, hence the factor qpassive only.

Game G6: In this game, we consider attacks in which the adversary starts to be active in the second
flow: it chooses the ciphertext c. We will show that there is a small chance to send the correct authenticator
AuthC, except if the correct password has been guessed, and used in the ciphertext c: at most one password
can be tested.

More precisely, we replace the hash oracles Hi by private ones as soon as PK has been oracle-generated.

◮Rule S2(6)

– if ¬Corrupt ∧ OG(C, 1), compute AuthS = H′
1(S,C,PK, c).

– else,
get usk← Extract(MK, pw);
decrypt the ciphertext, K ′ ← Decaps(usk, c);
compute AuthS = H1(S,C,PK, c, pw,K ′).

18



◮Rule C2(6)

– if ¬Corrupt ∧ OG(C, 1), compute AuthS′ = H′
1(S,C,PK, c),

sk = H′
0(S,C,PK, c), AuthC = H′

2(S,C,PK, c)
– else, compute AuthS′ = H1(S,C,PK, c, pw,K),

sk = H0(S,C,PK, c, pw,K), AuthC = H2(S,C,PK, c, pw,K)

Games G6 and G5 are identical except if the adversary remarks the use of the private oracles H′
i in

sessions in which he chooses the ciphertext c, but not PK. Such an event happens only if A asks the H
queries on some transcript (S,C,PK, c) for the appropriate pair (pw,K), i.e. such that K = Decaps(pw, c),
for the password. This means that there exists at least one password pw such that (S,C,PK, c, pw,K) ∈
ΛH1 , and K = Decaps(pw, c). We call this event AskHS6. To make our analysis clearer, we distinguish the
two following cases:

– for all the sessions (S,C,PK, c), where c is chosen by the adversary, there is at most one password π
such that (S,C,PK, c, π,K = Decaps(π, c)) ∈ ΛH1 . We call this event AskHSU6. If it occurs, then at
most one password is tested by active attacks against the server. Our goal is to show that:

Pr[AskHSU6] ≤
qactiveS

N
.

– for some session (S,C,PK, c), there are at least two passwords π1, π2 such that (S,C,PK, c, πi,Ki =
Decaps(πi, c)) ∈ ΛH1 . We call this event AskHSM. If this event occurs, then A can construct a tuple
{c, (π1,K1), (π2,K2)} such that K1 = Decaps(π1, c) and K2 = Decaps(π2, c), which contradicts the
identity-based non-malleability of the underlying IB-KEM scheme:

Pr[AskHSM6] ≤ Advid-nm
IBK (t).

Hence,

∆6 ≤ Pr[AskHS6] ≤ Advid-nm
IBK (t) + Pr[AskHSU6].

Game G7: In this game, we now consider the active attacks against the client, from the beginning
of the session: the adversary sends the first flow, it thus controls PK, and possibly knows MK. As in
game G5, we want to make the generation of the ciphertext c independent of the password, even in this
case. However, we have to make the following computations independent of K first: we replace the hash
oracles by private oracles in all the sessions where nobody is corrupted:

◮Rule S2(7)

– if ¬Corrupt, compute AuthS = H′
1(S,C,PK, c);

– else,
get usk← Extract(MK, pw);
decrypt the ciphertext, K ′ ← Decaps(usk, c);
compute AuthS = H1(S,C,PK, c, pw,K ′).

◮Rule C2(7)

– if ¬Corrupt, compute AuthS′ = H′
1(S,C,PK, c),

sk = H′
0(S,C,PK, c), AuthC = H′

2(S,C,PK, c);
– else, compute AuthS′ = H1(S,C,PK, c, pw,K),

sk = H0(S,C,PK, c, pw,K), AuthC = H2(S,C,PK, c, pw,K)

19



◮Rule S3(7)

– if ¬Corrupt, compute AuthC = H′
2(S,C,PK, c)

and sk = H′
0(S,C,PK, c);

– else, compute AuthC′ = H2(S,C,PK, c, pw,K ′)
and sk = H0(S,C,PK, c, pw,K ′).

Games G7 and G6 are identical except when PK is not oracle-generated: all public oracles are replaced by
private ones. A can see the difference only if it asks H1 on some transcript (S,C,PK, c) for an appropriate
pair (pw,K), such that K = Decaps(pw, c) in ΛH1 . This query is required for a valid authenticator AuthS.

As we have canceled executions with collisions from game G2, for each authenticator AuthS sent by
the adversary, there is at most one tuple (S,C,PK, c, pw,K) such that AuthS = H1(S,C,PK, c, pw,K).
Such an event is denoted AskHC.

∆7 ≤ Pr[AskHC7].

Game G8: Since we still use the password for defining the distribution of c, we cannot say anything
about the probability of events AskHC and AskHSU. So, as in game G5, we now make the generation of
the ciphertext c independent of the password, even in the case that PK is generated by the adversary.
Since the adversary chooses the public key PK, the distance now involves the KwrtA-anonymity of the
IB-KEM scheme:

◮Rule C1(8)

– if ¬Corrupt, get c← CPK;
– else, get (K, c)← Encaps(PK, pw).

The distance between G8 and G7 is negligible except if A is able to distinguish the distribution CPK

from the distribution of CPK,pw, where pw is possibly known to the adversary, and PK has been chosen by
the adversary. Using a similar hybrid sequence of games as done in Game G5, but when the adversary
knows MK, we can easily show that

∆8 ≤ qactiveC × Advkwrta−anon
IBK (t) ≤ negl().

Game G9: First note that unless a corruption happened, the authenticators and the session keys are
computed using the private oracles, without the password in the input. Note that the password is no
longer used in any other stage of the simulation unless there has been a corruption:

– the server generates public parameters,
– the client generates a ciphertext in CPK.

We can thus choose the password at the very end only, or when a corruption happens: ∆9 = 0. And then,
we can evaluate whether events AskHC or AskHSU were raised or not:

– Event AskHSU means that for each session (S,C,PK, c), where c is chosen by the adversary (active
attack against the server, there is at most one appropriate pair (pw,K). And thus, only one password
can raise this event for each session against the server:

Pr[AskHSU9] ≤
qactiveS

N

– Event AskHC means thatA sent an authenticator AuthS (active attack against the client) that includes
the good password. But only one value for the password can raise this event for each session against
the client, since collisions on H1 were canceled:

Pr[AskHC9] ≤
qactiveC

N
.

20



Game G10: In order to conclude, we need to replace hash oracles by the private ones (at least for
the session keys) for all the sessions that are fresh. We already dealt with all the cases, except when the
password has been corrupted. In the security model, we also included passive sessions as fresh sessions,
even when players are corrupted.

◮Rule S2(10)

– if ¬Corrupt ∨ (OG(C, 1) ∧ OG(S, 2)),
compute AuthS = H′

1(S,C,PK, c);
– else,

get usk← Extract(MK, pw);
decrypt the ciphertext, K ′ ← Decaps(usk, c);
compute AuthS = H1(S,C,PK, c, pw,K ′).

◮Rule C2(10)

– if ¬Corrupt ∨ (OG(C, 1) ∧ OG(S, 2)),
compute AuthS′ = H′

1(S,C,PK, c),
sk = H′

0(S,C,PK, c), AuthC = H′
2(S,C,PK, c);

– else, compute AuthS′ = H1(S,C,PK, c, pw,K),
sk = H0(S,C,PK, c, pw,K), AuthC = H2(S,C,PK, c, pw,K)

◮Rule S3(10)

– if ¬Corrupt ∨ (OG(C, 1) ∧ OG(S, 2)),
compute AuthC = H′

2(S,C,PK, c)
and sk = H′

0(S,C,PK, c);
– else, compute AuthC′ = H2(S,C,PK, c, pw,K ′)

and sk = H0(S,C,PK, c, pw,K ′).

Games G10 and G9 are identical except when the two first flows are oracle-generated and the password is
compromised: we replace the hash oracles by private oracles. But exactly as in game G3, the distinction
relies on the weak semantic security of the IB-KEM scheme:

∆10 ≤ qsession × Advind
IBK(t) + γqH ≤ negl().

Since in the latter game, all the session keys are computed with a private oracle, there is no difference
between the real and the random cases for the Test-queries:

Pr[S10] =
1

2
.

B Analysis in the Generic Model

B.1 The Common co-CDH-Problem

Let us first recall the Common co-CDH-Problem: given g, h ∈ G, and V ∈ GT , output c ∈ G, k0 6= k1 ∈ Zp,
and K0,K1 ∈ GT such that:

ghki = co-CDHKi,c(V ) for i = 0, 1.

We define the success of A in breaking the Common-co-CDHG,ê-Problem, denoted by Succcommon-co-cdh
G,ê (A)

as:

Pr

[

g, h
R
← G;V ∈ GT ; (c, k0, k1,K0,K1)← A(g, h, V ) :

k0 6= k1 ∧ ghk0 = co-CDHK0,c(V ) ∧ ghk1 = co-CDHK1,c(V )

]

.

21



Theorem 8. Let A be an adversary that makes at most q group operation queries (internal laws in G or
GT , or pairing operations). On inputs g, h ∈ G, and V ∈ GT , the probability that A outputs a solution
(k0, k1,K0,K1, c) to the Common co-CDH-Problem is bounded by

(3q + 4)2 + 3

p
≤ O

(

q2

p

)

.

Proof. Let A be an adversary against the Common co-CDH-Problem. We define a simulator B that
emulates the group oracles: B maintains two lists L1 and LT of polynomials L1 = {(F1,i, ξ1,i), i = 1, · · · , t1}
and LT = {(FT,i, ξT,i), i = 1, · · · , tT } such that at step t, t1 + tT ≤ 3 · t + 4. The entries ξ1,i, ξT,i are set to
be distinct random strings and are used to represent elements in G and GT respectively. At the beginning
of the game, B just sets two polynomials F1,0 = 1 and F1,1 = x1, which refer to a generator g and a
random element h = gx1 in G, respectively. Similarly, B defines two polynomials FT,0 = 1 and FT,1 = X1

associated to elements U = e(g, g) and V = e(g, g)X1 in GT .

For any oracle query, B updates the lists L1 and LT :

– Group Operation in G: when A asks for the addition of two elements in G, it gives two represen-
tations ξi and ξj. Theses two strings are either associated to the polynomials F1,i, F1,j ((F1,i, ξi) and
(F1,j , ξj) are in L1) or one defines a new variable x1,i and set F1,i = x1,i associated to ξi and thus
adds (F1,i, ξi) to L1 (or for index j). We thus assume that (F1,i, ξi) and (F1,j , ξj) are in L1.

Then, it computes the sum of the polynomials, F1,k = F1,i + F1,j . If the resulting polynomial F1,k

already appears in the list for some index l ≤ t1, then it sets ξ1,k ← ξ1,l, else it chooses a new random
string in {0, 1}log2 p for ξ1,k. Note that group operations in G result in multivariate polynomials of
degree at most one in variables x1, · · · , xm, for some integer m ≤ t1.

– Pairing: when A requests a pairing query. It gives two representations ξ1,i and ξ1,j. As above, by
possibly setting the undefined elements, we can assume that (F1,i, ξi) and (F1,j , ξj) are in L1. Then,
B computes the product of the polynomials, FT,k = F1,i · F1,j . If the resulting polynomial already
appears in the list for some index l ≤ tT , then it sets ξT,k ← ξT,l, else it chooses a new random string
ξT,k in {0, 1}log2 p for FT,k.

Since we know that polynomials in L1 are of degree 1 in the variables x1, . . ., the polynomials we
create with this simulation are of degree 2 in the same variables.

– Group operation in GT : when A asks for the addition of two elements in GT , it gives two represen-
tations ξi and ξj . As above, by possibly setting the undefined elements (and new variables Xi or Xj),
we can assume that (FT,i, ξi) and (FT,j , ξj) are in LT . Then, B computes the sum of the polynomials,
FT,k = FT,i + FT,j. If the resulting polynomial already appears in the list for some index l ≤ tT , then
it sets ξT,k ← ξT,l, else it chooses a new random string ξT,k in {0, 1}log2 p for FT,k.

In the previous simulation, we created polynomials in LT of degree 2 in the variables x1, . . .. We
can thus add these polynomials: they remain polynomials of degree 2 in the variables x1, . . .. We
can also add these polynomials with the initial polynomials FT,1, FT,2, . . . and the new variables Xi:
polynomials of degree 1 in the variables X1, . . ..

As a consequence, any polynomial F in LT can be split in two polynomials A ∈ Zp[x1, · · · , xm] (of degree
2) and B ∈ Zp[X1, · · · ,Xn] (of degree 1) such that F = A + B.

Note that for each group operation query, the oracle adds at most three new variables in the list. Thus
if q is the number of queries we have t1 + tT ≤ 3q + 4.

To evaluate the success of any adversary in distinguishing the above simulation from the real oracles,
one has to define the event raised in case of deviation. This happens if the evaluations of two polynomials on

22



the initial vector (x1, . . . ,X1, . . .) refer to the same value: the oracles would output the same representation
whereas our simulation just compares the polynomials and would thus output different representations.
More precisely, the simulation can be detected if there exists a pair of polynomials (F,F ′) such that for
a random choice of x1, · · · , xn,X1, · · · ,Xm in Zp,

F (x1, · · · , xn,X1, · · · ,Xm) = F ′(x1, · · · , xn,X1, · · · ,Xm) whereas F 6= F ′.

Since polynomials are of degree at most 2, this can happen with probability less than 2/p for each
pair of polynomials: after q queries, the probability that the adversary distinguishes the two executions
is bounded by 2 · (3q + 4)2/p.

Unless the adversary A detects the simulation, it terminates by outputting a tuple (k0, k1, ξ
T
0 , ξT

1 , ξ1
c ),

where k0, k1 are in Zp. B retrieves, in the list, the polynomials associated to ξT
0 (representation of K0), ξT

1

(representation of K1) and ξ1
c (representation of c), if they exist. Otherwise, as before, it adds new variables.

Let thus F0, F1 and P be the polynomials associated to ξT
0 , ξT

1 and ξ1
c respectively: P ∈ Zp[x1, x2, · · · , xm]

of degree one, and Fi ∈ Zp[x1, · · · , xm,X1, · · · ,Xn] of degree two. More precisely, as noted before, we can
split Fi = Ai + Bi, with Ai ∈ Zp[x1, x2, · · · , xm] of degree two, and Bi ∈ Zp[X1, · · · ,Xn] of degree one.

If A is successful, this means that for some βi, we have:

cβi = ghki and V βi = Ki

The equalities above implies the following ones:

{

βi · P (x1, x2, · · · , xn) = 1 + kix1

X1 · βi = Ai(x1, x2, · · · , xn) + Bi(X1, · · · ,Xm)

After substitution, we obtain

(Ai(x1, x2, · · · , xm) + Bi(X1, · · · ,Xn)) · P (x1, x2, · · · , xm)− (1 + kix1) ·X1 = 0.

At this point, either the success probability of the adversary is negligible (the above polynomial is
non-zero), or

Ai(x1, x2, · · · , xm) = 0, Bi(X1,X2, · · · ,Xn) = βi ·X1

where βi is now known to be a constant. Since P is a common polynomial, one gets

(1 + k1x1) · β0 − (1 + k0x1) · β1 = 0.

Again, either the success probability of the adversary is negligible (the above polynomial is non-zero), or
β0 = β1 and k1β0 = k0β1, which implies that k0 = k1. However, a successful attack does not allow that,
which concludes the proof.

C Analysis of the Successive-Power Problem.

The Successive-Power problem is the following: given g, gx, gy, gz , and gz/x, gz/x2
, . . . , gz/xq

, as well as
V , from some V ∈ GT , where q is a parameter, decide whether V = ê(g, g)xyz , or V is a random element
of GT .

23



Theorem 9. Let A be an adversary that makes at most t group operation queries. On input g, gx, gy, g
z

xi ,
for i ∈ {0, · · · , q}, the advantage of A in distinguishing the distribution of V = ê(g, g)xyz from the random
distribution in GT is bounded by

(3t + q + 7)2

p
≤ O

(

t2 + q2

p

)

Proof. As in previous proof, we construct an algorithm B that interacts with A, using lists of pairs
L1 = {(F1,i, ξ1,i)} and LT = {(FT,i, ξT,i)}, but this time, we use fractions of polynomials. It starts with
F1,1 = 1, F1,2 = X,F1,3 = Y, F1,i = Z

Xi−4 for i = {4, · · · , q + 4}, and FT,1 = 1, FT,2 = T0, FT,3 = T1.
X,Y,Z are unknown variables. For a random bit b, Tb is also a really new unknown variable, whereas
T1−b = XY Z (but considered as an independent variable too. The adversary has to guess b.

When A terminates, it outputs its guess b′, and then B chooses a random assignment x, y, z, tb ∈ Zp,
for X,Y,Z, and Tb but sets T1−b = xyz.

In the simulated game, the advantage of the adversary is clearly zero: all the polynomials built during
the simulation are independent to XY Z.

One thus have just to evaluate the probability the adversary can detect that it is interacting with a
simulator: after t queries, the number of polynomials is upper-bounded by 3t+ q +7, which concludes the
proof.

24


