50 research outputs found

    Duality and Braiding in Twisted Quantum Field Theory

    Full text link
    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte

    Fractional Spin for Quantum Hall Effect Quasiparticles

    Full text link
    We investigate the issue of whether quasiparticles in the fractional quantum Hall effect possess a fractional intrinsic spin. The presence of such a spin SS is suggested by the spin-statistics relation S=θ/2πS=\theta/2\pi, with θ\theta being the statistical angle, and, on a sphere, is required for consistent quantization of one or more quasiparticles. By performing Berry-phase calculations for quasiparticles on a sphere we find that there are two terms, of different origin, that couple to the curvature and can be interpreted as parts of the quasiparticle spin. One, due to self-interaction, has the same value for both the quasihole and quasielectron, and fulfills the spin-statistics relation. The other is a kinematical effect and has opposite signs for the quasihole and quasielectron. The total spin thus agrees with a generalized spin-statistics theorem (Sqh+Sqe)/2=θ/2π(S_{qh} + S_{qe})/2 = \theta/2\pi. On the plane, we do not find any corresponding terms.Comment: 15 pages, RevTeX-3.

    The Spectrum of the Dirac Operator on Coset Spaces with Homogeneous Gauge Fields

    Get PDF
    The spectrum and degeneracies of the Dirac operator are analysed on compact coset spaces when there is a non-zero homogeneous background gauge field which is compatible with the symmetries of the space, in particular when the gauge field is derived from the spin-connection. It is shown how the degeneracy of the lowest Landau level in the recently proposed higher dimensional quantum Hall effect is related to the Atiyah-Singer index theorem for the Dirac operator on a compact coset space.Comment: 25 pages, typeset in LaTeX, uses youngtab.st

    Noncommutativity and Lorentz Violation in Relativistic Heavy Ion Collisions

    Get PDF
    The experimental detection of the effects of noncommuting coordinates in electrodynamic phenomena depends on the magnitude of |\theta B|, where \theta is the noncommutativity parameter and B a background magnetic field. With the present upper bound on \theta, given by \theta_{\rm bound} \simeq 1/(10 {\rm TeV})^2, there was no large enough magnetic field in nature, including those observed in magnetars, that could give visible effects or, conversely, that could be used to further improve \theta_{\rm bound}. On the other hand, recently it has been proposed that intense enough magnetic fields should be produced at the beginning of relativistic heavy ion collisions. We discuss here lepton pair production by free photons as one kind of signature of noncommutativity and Lorentz violation that could occur at RHIC or LHC. This allows us to obtain a more stringent bound on \theta, given by 10^{-3} \theta_{\rm bound}, if such "exotic" events do not occur.Comment: Five pages, no figures

    A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice

    Get PDF
    AbstractIn marker-assisted breeding for bacterial blight (BB) resistance in rice, three major resistance genes, viz., Xa21, xa13 and xa5, are routinely deployed either singly or in combinations. As efficient and functional markers are yet to be developed for xa13 and xa5, we have developed simple PCR-based functional markers for both the genes. For xa13, we designed a functional PCR-based marker, xa13-prom targeting the InDel polymorphism in the promoter of candidate gene Os8N3 located on chromosome 8 of rice. With respect to xa5, a multiplex-PCR based functional marker system, named xa5FM, consisting of two sets of primer pairs targeting the 2-bp functional nucleotide polymorphism in the exon II of the gene TFIIAɤ5 (candidate for xa5), has been developed. Both xa13-prom and xa5FM can differentiate the resistant and susceptible alleles for xa13 and xa5, respectively, in a co-dominant fashion. Using these two functional markers along with the already reported functional PCR-based marker for Xa21 (pTA248), we designed a single-tube multiplex PCR based assay for simultaneous detection of all the three major resistance genes and demonstrated the utility of the multiplex marker system in a segregating population

    Moments of inertia, nucleon axial-vector coupling, the {\bf 8}, {\bf 10}, 10ˉ\bar{\bf 10} and 273/2{\bf 27}_{3/2} mass spectrums and the higher SU(3)_f representation mass splittings in the Skyrme model

    Full text link
    The broad importance of a recent experimental discovery of pentaquarks requires more theoretical insight into the structure of higher representation multiplets. The nucleon axial-vector coupling, moments of inertia, the {\bf 8}, {\bf 10}, 10ˉ\bar{\bf 10}, and 273/2{\bf 27}_{3/2} absolute mass spectra and the higher SU(3)f_f representation mass splittings for the multiplets 8{\bf 8}, 10{\bf 10}, 10ˉ\bar{\bf 10}, 27{\bf 27}, 35{\bf 35}, 35ˉ\bar{\bf 35}, and 64\bf 64 are computed in the framework of the minimal SU(3)f{\rm SU(3)_f} extended Skyrme model by using only one free parameter, i.e., the Skyrme charge ee. The analysis presented in this paper represents simple and clear theoretical estimates, obtained without using any experimental results for higher (10ˉ\bar{\bf 10},...) multiplets. The obtained results are in good agreement with other chiral soliton model approaches that more extensively use experimental results as inputs.Comment: 22 pages, 12 figures, 9 tables, version accepted in JHE

    The Chiral Coupling Constants \lb{1} and \lb{2} from \pipi Phase Shifts

    Full text link
    A Roy equation analysis of the available ππ\pi\pi phase shift data is performed with the I=0I=0 S- wave scattering length a00a^0_0 in the range predicted by the one-loop standard chiral perturbation theory. A suitable dispersive framework is developed to extract the chiral coupling constants \lb{1}, \lb{2} and yields \lb{1}=1.70±0.15=-1.70\pm0.15 and \lb{2}5.0\approx 5.0. We remark on the implications of this determination to (combinations of) threshold parameter predictions of the three lowest partial waves.Comment: 36 pages using latex with 1 figure embedded using eps

    Particle-Vortex Duality and the Modular Group: Applications to the Quantum Hall Effect and Other 2-D Systems

    Get PDF
    We show how particle-vortex duality implies the existence of a large non-abelian discrete symmetry group which relates the electromagnetic response for dual two-dimensional systems in a magnetic field. For conductors with charge carriers satisfying Fermi statistics (or those related to fermions by the action of the group), the resulting group is known to imply many, if not all, of the remarkable features of Quantum Hall systems. For conductors with boson charge carriers (modulo group transformations) a different group is predicted, implying equally striking implications for the conductivities of these systems, including a super-universality of the critical exponents for conductor/insulator and superconductor/insulator transitions in two dimensions and a hierarchical structure, analogous to that of the quantum Hall effect but different in its details. Our derivation shows how this symmetry emerges at low energies, depending only weakly on the details of dynamics of the underlying systems.Comment: 22 pages, LaTeX, 2 figures, uses revte

    Quantum Gravity, Field Theory and Signatures of Noncommutative Spacetime

    Full text link
    A pedagogical introduction to some of the main ideas and results of field theories on quantized spacetimes is presented, with emphasis on what such field theories may teach us about the problem of quantizing gravity. We examine to what extent noncommutative gauge theories may be regarded as gauge theories of gravity. UV/IR mixing is explained in detail and we describe its relations to renormalization, to gravitational dynamics, and to deformed dispersion relations in models of quantum spacetime of interest in string theory and in doubly special relativity. We also discuss some potential experimental probes of spacetime noncommutativity.Comment: 26 pages, 4 figures; v2: comments and references added; v3: typos corrected, clarifying comments and references added; Based on Plenary Lecture delivered at the XXIX Encontro Nacional de Fisica de Particulas e Campos, Sao Lourenco, Brasil, September 22-26, 2008; Final version to be published in General Relativity and Gravitatio

    Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway

    Full text link
    corecore