8 research outputs found
The Ecosystem Baseline for Particle Flux in the Northern Gulf of Mexico
Response management and damage assessment during and after environmental disasters such as the Deepwater Horizon (DWH) oil spill require an ecological baseline and a solid understanding of the main drivers of the ecosystem. During the DWH event, a large fraction of the spilled oil was transported to depth via sinking marine snow, a routing of spilled oil unexpected to emergency response planners. Because baseline knowledge of particle export in the Northern Gulf of Mexico and how it varies spatially and temporally was limited, we conducted a detailed assessment of the potential drivers of deep (~1400 m depth) particle fluxes during 2012â2016 using sediment traps at three contrasting sites in the Northern Gulf of Mexico: near the DWH site, at an active natural oil seep site, and at a site considered typical for background conditions. The DWH site, located ~70 km from the Mississippi River Delta, showed flux patterns that were strongly linked to the Mississippi nitrogen discharge and an annual subsequent surface bloom. Fluxes carried clear signals of combustion products, which likely originated from pyrogenic sources that were transported offshore via the Mississippi plume. The seep and reference sites were more strongly influenced by the open Gulf of Mexico, did not show a clear seasonal flux pattern, and their overall sedimentation rates were lower than those at the DWH site. At the seep site, based on polycyclic aromatic hydrocarbon data, we observed indications of three different pathways for ânaturalâ oiled-snow sedimentation: scavenging by sinking particles at depth, weathering at the surface before incorporation into sinking particles, and entry into the food web and subsequent sinking in form of detritus. Overall, sedimentation rates at the three sites were markedly different in quality and quantity owing to varying degrees of riverine and oceanic influences, including natural seepage and contamination by combustion products
High export via small particles before the onset of the North Atlantic spring bloom
Sinking organic matter in the North Atlantic Ocean transfers 1-3 Gt carbon year?1 from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent work has suggested that intermittent water column stratification resulting in the termination of deep convection can isolate phytoplankton from the euphotic zone, leading to export of small particles. We present depth profiles of large (>0.1mm equivalent spherical diameter, ESD) and small (300m depth, leading to deep mixing of particles as deep as 600m. Subsequent re-stratification could trap these particles at depth and lead to high particle fluxes at depth without the need for aggregation (âmixed layer pump'). Overall we suggest that pre-bloom fluxes to the mesopelagic are significant, and the role of small sinking particles requires careful consideration
High export via small particles before the onset of the North Atlantic spring bloom
Sinking organic matter in the North Atlantic Ocean transfers 1-3 Gt carbon year?1 from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent work has suggested that intermittent water column stratification resulting in the termination of deep convection can isolate phytoplankton from the euphotic zone, leading to export of small particles. We present depth profiles of large (>0.1mm equivalent spherical diameter, ESD) and small (<0.1mm ESD) sinking particle concentrations and fluxes prior to the spring bloom at two contrasting sites in the North Atlantic (61°30N, 11°00W and 62°50N, 02°30W) derived from the Marine Snow Catcher and the Video Plankton Recorder. The downward flux of organic carbon via small particles ranged from 23-186 mg C m?2 d?1, often constituting the bulk of the total particulate organic carbon flux. We propose that these rates were driven by two different mechanisms: In the Norwegian Basin, small sinking particles likely reached the upper mesopelagic by disaggregation of larger, faster sinking particles. In the Iceland Basin, a storm deepened the mixed layer to >300m depth, leading to deep mixing of particles as deep as 600m. Subsequent re-stratification could trap these particles at depth and lead to high particle fluxes at depth without the need for aggregation (âmixed layer pump'). Overall we suggest that pre-bloom fluxes to the mesopelagic are significant, and the role of small sinking particles requires careful consideration. <br/
Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)
The biological carbon pump, driven principally by surface production and sinking of organic matter to deep water and its subsequent remineralization to CO2 maintains atmospheric CO2 around 200âŻppm lower than it would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. This imbalance is due, in part, to our inability to measure respiration directly and our reliance on radiotracer-based proxies. One solution to these problems might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100â1000âŻm depth) early in the productive season prior to it being consumed later, a situation which could lead to a net apparent sink occurring if a steady state assumption is applied as is often the approach. In this work, we develop a novel accounting method to address this issue, independent of respiration measurements, by estimating fluxes into and accumulation within distinct vertical layers in the mesopelagic. We apply this approach to a time series of measurements of particle sinking velocities and interior organic carbon concentrations made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic (100â200âŻm depth) which declined over several weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically in the mesopelagic
Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)
Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global carbon cycle and the Earthâs climate through the production of coccoliths made of calcium carbonate (calcite) and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Measurements of coccolithophore calcite production (CP) and dilution experiments to determine microzooplankton (â€63âŻÂ”m) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2.
CP at CCS ranged from 10.4 to 40.4âŻÂ”mol C mâ3 dâ1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations âŒ6âŻmgâŻmâ3). Cell normalised calcification rates declined from âŒ1.7 to âŒ0.2âŻpmol C cellâ1 dâ1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mLâ1, with net growth rates ranging from 0.06 to 0.21 dâ1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 dâ1 and from 0.01 to 1.32 dâ1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mLâ1 was recorded, along with CP rates of 6000âŻÂ”mol C mâ3 dâ1 and an intrinsic growth rate of 0.29 dâ1, with âŒ80% of daily calcite production being consumed.
Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton-mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction
Seasonal variations of sinking velocities in Austral diatom blooms: Lessons learned from COMICS
The sinking velocity (SV) of organic particles is a critical driver of carbon transport to the deep sea. Accurate determination of marine particle SV and their influencing factors is therefore a key to better understanding of biological carbon storage in the ocean. We used two different approaches to estimate average SVs of particles during a Southern Ocean spring bloom (North of South Georgia): optical backscatter sensors on gliders (âlargeâ, >50 ÎŒm diameter), and radioactive pairs (234Thâ238U and 210Po-210Pb). Our results were complemented with time-of flight estimations of bulk SVs from deep sediment traps deployed at 1950 m.
Bulk SVs increased consistently with depth from 15 ± 1 m dâ1 at 10 m to 50 ± 10 m dâ1 at the depth of export (Zp = 95 m) and from 96 ± 35 m dâ1 at 150 m to 119 ± m dâ1 at 450 m. Only the fastest particles, mainly comprised by faecal pellets (FPs) and diatom aggregates, survived remineralization and dominated carbon fluxes at deep depth.
The SV variability at the base of the Euphotic Zone was studied in relation to the stage of the bloom by analysing three different moments of the spring diatom bloom in the region during the years 2012, 2013 and 2017. The export efficiency (ExpEff), defined as the ratio POC flux exported below the Euphotic Zone to the satellite derived surface NPP, was also evaluated. It was found from the temporal series that ExpEff and SV vary throughout the diatom bloom as the community structure progresses. A good correlation between both variables was observed (ExpEff = (0.023 ± 0.006) SV, r = 0.82, p = 0.04). Showing that the variability in how efficiently the carbon flux is exported out of the Euphotic Zone can be explained by the SV at which the particles sink. Further investigations are required to analyse if this is a specific model of the functioning of the BCP during the diatom bloom in North South Georgia or if it can be extrapolated to other scenarios
Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)
Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global carbon cycle and the Earth's climate through the production of coccoliths made of calcium carbonate (calcite) and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Measurements of coccolithophore calcite production (CP) and dilution experiments to determine microzooplankton (â€63 ”m) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2. CP at CCS ranged from 10.4 to 40.4 ”mol C mâ3 dâ1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations âŒ6 mg mâ3). Cell normalised calcification rates declined from âŒ1.7 to âŒ0.2 pmol C cellâ1 dâ1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mLâ1, with net growth rates ranging from 0.06 to 0.21 dâ1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 dâ1 and from 0.01 to 1.32 dâ1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mLâ1 was recorded, along with CP rates of 6000 ”mol C mâ3 dâ1 and an intrinsic growth rate of 0.29 dâ1, with âŒ80% of daily calcite production being consumed. Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton-mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction.</p