1,021 research outputs found

    Structural and magnetic study of a dilute magnetic semiconductor: Fe doped CeO2 nanoparticles

    Full text link
    This paper reports the effect of Fe doping on the structure and room temperature ferromagnetism of CeO2 nanoparticles. X-ray diffraction and selective area electron diffraction measurement reflects that Ce1-xFexO2 (x = 0.0 - 0.07) nanoparticles exhibit single phase nature with cubic structure and none of the sample showed the presence of any secondary phase. The mean particle size calculated by using a transmission electron microscopy measurement was found to increase with increase in Fe content. DC magnetization measurements performed at room temperature indicates that all the samples exhibit ferromagnetism. The saturation magnetic moment has been found to increase with an increase in the Fe content.Comment: 16 Pages, 5 figure, 1 Table, Accepted in JN

    Absorption cross section in warped AdS_3 black hole revisited

    Full text link
    We investigate the absorption cross section for minimal-coupled scalars in the warped AdS_3 black hole. According to our calculation, the cross section reduces to the horizon area in the low energy limit as usually expected in contrast to what was previously found. We also calculate the greybody factor and find that the effective temperatures for the two chiral CFT's are consistent with that derived from the quasinormal modes. Observing the conjectured warped AdS/CFT correspondence, we suspect that a specific sector of the CFT operators with the desired conformal dimension could be responsible for the peculiar thermal behaviour of the warped AdS_3 black hole.Comment: 16+1 pages, typos corrected, references and footnotes adde

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Parental Influence on Child and Adolescent Physical Activity Level: A Meta-Analysis

    Get PDF
    Parents are often regarded as one of the significant social agents who are important to the participation of physical activity (PA) among children and adolescents. However, within the literature, the relationships between parental influences and child and adolescent PA have been inconclusive and discordant. The purpose of this meta-analysis was to quantify and synthesize the associations between parental social influences (positive parental influence, punishment, and discouragement) and the PA level of children and adolescents. Through a systematic literature search using PsycINFO, Web of Science, PubMed, ProQuest, and SPORTDiscus databases, we identified 112 eligible studies and subsequently extracted 741 effect sizes for our analysis. Multilevel meta-analysis showed that the corrected zero-order correlation of positive parental influence was positive and statistically significant, r = 0.202, SE = 0.014, t = 14.975, p \u3c 0.001, 95% confidence interval (CI) = [0.176, 0.228]. Further moderation analysis also found that this was significantly moderated by parental gender (maternal vs. paternal), respondent of influence measure (parent-reported vs. child-reported), and type of PA measure (subjective vs. objective). The corrected zero-order correlations of negative parental influences (i.e., punishment and discouragement) were not statistically significant, and no significant moderation effects were observed. The findings of our meta-analysis showed that children and adolescents had higher PA levels when their parents supported PA participation by exerting positive social influence. Punishment and discouragement against PA by parents did not appear to be significantly associated with the PA level of children and adolescents. The findings of negative parental social influence were mixed and required further investigations

    PyCOOL - a Cosmological Object-Oriented Lattice code written in Python

    Full text link
    There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL . Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/ .Comment: 23 pages, 12 figures; some typos correcte

    Low-Lying States of the Six-Dimensional Fractional Superstring

    Full text link
    The K=4K=4 fractional superstring Fock space is constructed in terms of \bZ_4 parafermions and free bosons. The bosonization of the \bZ_4 parafermion theory and the generalized commutation relations satisfied by the modes of various parafermion fields are reviewed. In this preliminary analysis, we describe a Fock space which is simply a tensor product of \bZ_4 parafermion and free boson Fock spaces. It is larger than the Lorentz-covariant Fock space indicated by the fractional superstring partition function. We derive the form of the fractional superconformal algebra that may be used as the constraint algebra for the physical states of the FSS. Issues concerning the associativity, modings and braiding properties of the fractional superconformal algebra are also discussed. The use of the constraint algebra to obtain physical state conditions on the spectrum is illustrated by an application to the massless fermions and bosons of the K=4K=4 fractional superstring. However, we fail to generalize these considerations to the massive states. This means that the appropriate constraint algebra on the fractional superstring Fock space remains to be found. Some possible ways of doing this are discussed.Comment: 69 pages, LaTeX, CLNS 91/112

    Kac and New Determinants for Fractional Superconformal Algebras

    Full text link
    We derive the Kac and new determinant formulae for an arbitrary (integer) level KK fractional superconformal algebra using the BRST cohomology techniques developed in conformal field theory. In particular, we reproduce the Kac determinants for the Virasoro (K=1K=1) and superconformal (K=2K=2) algebras. For K≥3K\geq3 there always exist modules where the Kac determinant factorizes into a product of more fundamental new determinants. Using our results for general KK, we sketch the non-unitarity proof for the SU(2)SU(2) minimal series; as expected, the only unitary models are those already known from the coset construction. We apply the Kac determinant formulae for the spin-4/3 parafermion current algebra ({\em i.e.}, the K=4K=4 fractional superconformal algebra) to the recently constructed three-dimensional flat Minkowski space-time representation of the spin-4/3 fractional superstring. We prove the no-ghost theorem for the space-time bosonic sector of this theory; that is, its physical spectrum is free of negative-norm states.Comment: 33 pages, Revtex 3.0, Cornell preprint CLNS 93/124

    CPT, T, and Lorentz Violation in Neutral-Meson Oscillations

    Full text link
    Tests of CPT and Lorentz symmetry using neutral-meson oscillations are studied within a formalism that allows for indirect CPT and T violation of arbitrary size and is independent of phase conventions. The analysis is particularly appropriate for studies of CPT and T violation in oscillations of the heavy neutral mesons D, B_d, and B_s. The general Lorentz- and CPT-breaking standard-model extension is used to derive an expression for the parameter for CPT violation. It varies in a prescribed way with the magnitude and orientation of the meson momentum and consequently also with sidereal time. Decay probabilities are presented for both uncorrelated and correlated mesons, and some implications for experiments are discussed.Comment: 11 pages, references added, accepted in Physical Review
    • …
    corecore