1,256 research outputs found

    Pion-photon and photon-pion transition form factors in light-cone formalism

    Full text link
    We derive the minimal Fock-state expansions of the pion and the photon wave functions in light-cone formalism, then we calculate the pion-photon and the photon-pion transition form factors of γ∗π0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and γ∗γ→π0\gamma ^{\ast}\gamma \to \pi ^{0} processes by employing these quark-antiquark wave functions of the pion and the photon. We find that our calculation for the γ∗γ→π0\gamma ^{\ast}\gamma \to \pi ^{0} transition form factor agrees with the experimental data at low and moderately high energy scale. Moreover, the physical differences and inherent connections between the transition form factors of γ∗π0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and γ∗γ→π0 \gamma ^{\ast}\gamma \to \pi ^{0} have been illustrated, which indicate that these two physical processes are intrinsically related. In addition, we also discuss the π0→γγ\pi ^{0}\to \gamma \gamma form factor and the decay width Γ(π→γγ) \mathit{\Gamma}(\pi \to \gamma \gamma) at Q2=0Q^{2}=0.Comment: 20 pages, 2 figure

    Magnetic transition and spin dynamics in the triangular Heisenberg antiferromagnet α-KCrO2

    Get PDF
    We present the results of muon-spin relaxation measurements on the triangular lattice Heisenberg antiferromagnet α -KCrO 2 . We observe sharp changes in behavior at an ordering temperature of T c =23 K, with an additional broad feature in the muon-spin relaxation rate evident at T=13 K, both of which correspond to features in the magnetic contribution to the heat capacity. This behavior is distinct from both the Li- and Na-containing members of the series. These data may be qualitatively described with the established theoretical predictions for the underlying spin system

    Thermal properties of coal during low temperature oxidation using a grey correlation method

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The low temperature oxidation of coal is a contradictory and unified dynamic process of coexisting mass and heat transfer. The thermophysical properties are crucial during coal spontaneous combustion. In the current paper, the variations of moisture, ash, volatiles, fixed carbon and thermophysical properties (thermal diffusivity, specific heat and thermal conductivity) of three coal samples from 30 °C to 300 °C were studied, and their grey correlation was analyzed. The results indicated that with the increase of temperature, the free moisture of Coals A and B decreased first but then increased, while the free moisture of Coal C kept decreasing without a later increase. The variation of surface moisture was consistent with that of free moisture. The trend of volatiles and fixed carbon was completely the opposite, showing a significant negative correlation. Ash was less affected by temperature. Along with the rise of temperature, the thermal diffusivity of three coal samples decreased first but later increased, and the specific heat was always in a state of increasing. The change in thermal conductivity was mainly affected by specific heat. By calculating the gray correlation degree, the major factors affecting the thermophysical properties were obtained

    Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3

    Get PDF
    We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ > 100 ns

    Multiscale modeling and simulation of nanotube-based torsional oscillators

    Get PDF
    In this paper, we propose the first numerical study of nanotube-based torsional oscillators via developing a new multiscale model. The edge-to-edge technique was employed in this multiscale method to couple the molecular model, i.e., nanotubes, and the continuum model, i.e., the metal paddle. Without losing accuracy, the metal paddle was treated as the rigid body in the continuum model. Torsional oscillators containing (10,0) nanotubes were mainly studied. We considered various initial angles of twist to depict linear/nonlinear characteristics of torsional oscillators. Furthermore, effects of vacancy defects and temperature on mechanisms of nanotube-based torsional oscillators were discussed

    On Two-Body Decays of A Scalar Glueball

    Full text link
    We study two body decays of a scalar glueball. We show that in QCD a spin-0 pure glueball (a state only with gluons) cannot decay into a pair of light quarks if chiral symmetry holds exactly, i.e., the decay amplitude is chirally suppressed. However, this chiral suppression does not materialize itself at the hadron level such as in decays into π+π−\pi^+\pi^- and K+K−K^+K^-, because in perturbative QCD the glueball couples to two (but not one) light quark pairs that hadronize to two mesons. Using QCD factorization based on an effective Lagrangian, we show that the difference of hadronization into ππ\pi\pi and KKKK already leads to a large difference between Br(π+π−){\rm Br} (\pi^+\pi^-) and Br(K+K−){\rm Br}(K^+K^-), even the decay amplitude is not chirally suppressed. Moreover, the small ratio of R=Br(ππ)/Br(KKˉ)R={\rm Br}(\pi\pi)/{\rm Br}(K\bar K) of f0(1710)f_0(1710) measured in experiment does not imply f0(1710)f_0(1710) to be a pure glueball. With our results it is helpful to understand the partonic contents if Br(ππ){\rm Br}(\pi\pi) or Br(KKˉ){\rm Br}(K\bar K) is measured reliably.Comment: revised versio

    Spin-filtering and charge- and spin-switching effects in a quantum wire with periodically attached stubs

    Full text link
    Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green's function method combined with the Landauer-Buttiker formalism. The coexistence of spin filtering, charge and spin switching are found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. The proposed nanostructure may be utilized to devise an all-electrical multifunctional spintronic device.Comment: 4 pages, 4 figure

    Spin diffusion in the low-dimensional molecular quantum Heisenberg antiferromagnet Cu(pyz)(NO3)2 detected with implanted muons

    Get PDF
    We present the results of muon-spin relaxation measurements of spin excitations in the one-dimensional quantum Heisenberg antiferromagnet Cu(pyz)(NO3)2. Using density-functional theory we propose muon sites and assess the degree of perturbation the muon probe causes on the system. We identify a site involving the muon forming a hydroxyl-type bond with an oxygen on the nitrate group that is sensitive to the characteristic spin dynamics of the system. Our measurements of the spin dynamics show that in the temperature range TNJ and that in the related two-dimensional system Cu(pyz)2(ClO4)2

    The CDF dijet excess from intrinsic quarks

    Get PDF
    The CDF collaboration reported an excess in the production of two jets in association with a WW. We discuss constraints on possible new particle state interpretations of this excess. The fact of no statistically significant deviation from the SM expectation for {ZZ+dijet} events in CDF data disfavors the new particle explanation. We show that the nucleon intrinsic strange quarks provide an important contribution to the WW boson production in association with a single top quark production. Such {WW+t} single top quark production can contribute to the CDF {WW+dijet} excess, thus the nucleon intrinsic quarks can provide a possible explanation to the CDF excess in {WW+dijet} but not in {ZZ+dijet} events.Comment: 4 latex pages, 1 figure. Version for journal publicatio

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays Bc→Ds(1968)ℓℓˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and Bc→Ds∗(2317)ℓℓˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ
    • …
    corecore