802 research outputs found

    Renormalization Group and Decoupling in Curved Space: II. The Standard Model and Beyond

    Full text link
    We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.Comment: 27 pages, 8 figure

    Crystallization of the ordered vortex phase in high temperature superconductors

    Full text link
    The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the ordered vortex lattice in high temperature superconductors after a sudden application of a magnetic field. Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for the creation of a propagating interface, and provides the time scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid Communications section

    Why Does Inflation Start at the Top of the Hill?

    Full text link
    We show why the universe started in an unstable de Sitter state. The quantum origin of our universe implies one must take a `top down' approach to the problem of initial conditions in cosmology, in which the histories that contribute to the path integral, depend on the observable being measured. Using the no boundary proposal to specify the class of histories, we study the quantum cosmological origin of an inflationary universe in theories like trace anomaly driven inflation in which the effective potential has a local maximum. We find that an expanding universe is most likely to emerge in an unstable de Sitter state, by semiclassical tunneling via a Hawking-Moss instanton. Since the top down view is forced upon us by the quantum nature of the universe, we argue that the approach developed here should still apply when the framework of quantum cosmology will be based on M-Theory.Comment: 21 pages, 1 figur

    Four-fermion interaction from torsion as dark energy

    Full text link
    The observed small, positive cosmological constant may originate from a four-fermion interaction generated by the spin-torsion coupling in the Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In particular, such a condensation occurs for quark fields during the quark-gluon/hadron phase transition in the early Universe. We study how the torsion-induced four-fermion interaction is affected by adding two terms to the Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the curvature tensor and a spinor-bilinear scalar density which measures the nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.

    Phenomenology of Λ\Lambda-CDM model: a possibility of accelerating Universe with positive pressure

    Full text link
    Among various phenomenological Λ\Lambda models, a time-dependent model Λ˙H3\dot \Lambda\sim H^3 is selected here to investigate the Λ\Lambda-CDM cosmology. Using this model the expressions for the time-dependent equation of state parameter ω\omega and other physical parameters are derived. It is shown that in H3H^3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter qq during cosmic evolution.Comment: 16 Latex pages, 11 figures, Considerable modifications in the text; Accepted in IJT

    Coherent states for exactly solvable potentials

    Full text link
    A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is given. The method, {\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear coherent states for the oscillators. The time evolution properties of some of these coherent states, show revival and fractional revival, as manifested in the autocorrelation functions, as well as, in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl
    corecore