324 research outputs found

    Composite MFV and Beyond

    Full text link
    We revisit and extend realizations of Minimal Flavor Violation (MFV) in theories with strongly coupled electro-weak symmetry breaking. MFV requires that some chiralities of light SM quarks are strongly composite leading, depending on the scenario, to bounds from compositeness searches, precision electro-weak tests or even flavor physics. Within the framework of partial compositeness we show how to extend the MFV paradigm allowing the treat the top quark differently. This can be realized if for example the strong sector has an U(2) symmetry. In this case the light generations can be mostly elementary and all the bounds are easily satisfied.Comment: 16 pages. v2) estimates improved, conclusions unchange

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.

    The \tau -> \mu \bar{\nu_i} \nu_i decay in the Randall Sundrum background with localized U(1)_Y gauge boson

    Full text link
    We study the effects of localization of the U(1)_Y gauge boson around the visible brane and the contributions of the KK modes of Z bosons on the BR of the LFV \tau -> \mu \bar{\nu_i} \nu_i decay. We observe that the BR is sensitive to the amount of localization of Z boson in the bulk of the Randall Sundrum background.Comment: 13 pages, 4 figures,1 tabl

    Fermions on an Interval: Quark and Lepton Masses without a Higgs

    Full text link
    We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure

    Constraints on the Bulk Standard Model in the Randall-Sundrum Scenario

    Full text link
    We derive constraints on the Randall-Sundrum scenario with the standard model fields in the bulk. These result from tree level effects associated with the deformation of the zero mode wave-functions of the W and the Z once electroweak symmetry is broken. Recently Cs\'{a}ki, Erlich and Terning pointed out that this implies large contributions to electroweak oblique parameters. Here we find that when fermions are allowed in the bulk the couplings of the WW and the ZZ to zero-mode fermions are also affected. We perform a fit to electroweak observables assuming universal bulk fermion masses and including all effects and find constraints that are considerably stronger than for the case with fermions localized in the low energy boundary. These put the lowest Kaluza-Klein excitation out of reach of the Large Hadron Collider. We then relax the universality assumption and study the effects of flavor violation in the bulk and its possible signatures.Comment: 18 pages, 2 ps figure

    Corporate financing decisions: UK survey evidence

    Get PDF
    Despite theoretical developments in recent years, our understanding of corporate capital structure remains incomplete. Prior empirical research has been dominated by archival regression studies which are limited in their ability to fully reflect the diversity found in practice. The present paper reports on a comprehensive survey of corporate financing decision-making in UK listed companies. A key finding is that firms are heterogeneous in their capital structure policies. About half of the firms seek to maintain a target debt level, consistent with trade-off theory, but 60 per cent claim to follow a financing hierarchy, consistent with pecking order theory. These two theories are not viewed by respondents as either mutually exclusive or exhaustive. Many of the theoretical determinants of debt levels are widely accepted by respondents, in particular the importance of interest tax shield, financial distress, agency costs and also, at least implicitly, information asymmetry. Results also indicate that cross-country institutional differences have a significant impact on financial decisions

    Liquidity, technological opportunities, and the stage distribution of venture capital investments

    Get PDF
    This paper explores the determinants of the stage distribution of European venture capital investments from 1990 to 2011. Consistent with liquidity risk theory, we find that the likelihood of investing in earlier stages increases relative to all private equity investments during liquidity crisis years. While liquidity is the main driver of acquisition investments and, to some extent, of expansion financings, technological opportunities are overall the main driver of early and late stage venture capital investments. In contrast to the dotcom crash, the recent financial crisis negatively affected the relative likelihood of expansion investments, but not of early and late stage investments

    RS1, Custodial Isospin and Precision Tests

    Full text link
    We study precision electroweak constraints within a RS1 model with gauge fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin symmetry sufficient to suppress excessive contributions to the T parameter. We then construct complete models, complying with all electroweak constraints, for solving the hierarchy problem, without supersymmetry or large hierarchies in the fundamental couplings. Using the AdS/CFT correspondence our models can be interpreted as dual to a strongly coupled conformal Higgs sector with global custodial symmetry, gauge and fermionic matter being fundamental fields external to the CFT. This scenario has interesting collider signals, distinct from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde

    Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC

    Get PDF
    The nuclear spin-dependent parity nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s-8s transition in 211Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table

    Collision statistics of driven granular materials

    Full text link
    We present an experimental investigation of the statistical properties of spherical granular particles on an inclined plane that are excited by an oscillating side-wall. The data is obtained by high-speed imaging and particle tracking techniques. We identify all particles in the system and link their positions to form trajectories over long times. Thus, we identify particle collisions to measure the effective coefficient of restitution and find a broad distribution of values for the same impact angles. We find that the energy inelasticity can take on values greater than one, which implies that the rotational degrees play an important role in energy transfer. We also measure the distance and the time between collision events in order to directly determine the distribution of path lengths and the free times. These distributions are shown to deviate from expected theoretical forms for elastic spheres, demonstrating the inherent clustering in this system. We describe the data with a two-parameter fitting function and use it to calculated the mean free path and collision time. We find that the ratio of these values is consistent with the average velocity. The velocity distribution are observed to be strongly non-Gaussian and do not demonstrate any apparent universal behavior. We report the scaling of the second moment, which corresponds to the granular temperature, and higher order moments as a function of distance from the driving wall. Additionally, we measure long time correlation functions in both space and in the velocities to probe diffusion in a dissipative gas.Comment: 12 pages, 4 figures, uses revtex
    • …
    corecore