778 research outputs found
SU(4) Chiral Quark Model with Configuration Mixing
Chiral quark model with configuration mixing and broken SU(3)\times U(1)
symmetry has been extended to include the contribution from c\bar c
fluctuations by considering broken SU(4) instead of SU(3). The implications of
such a model have been studied for quark flavor and spin distribution functions
corresponding to E866 and the NMC data. The predicted parameters regarding the
charm spin distribution functions, for example, \Delta c, \frac{\Delta
c}{{\Delta \Sigma}}, \frac{\Delta c}{c} as well as the charm quark distribution
functions, for example, \bar c, \frac{2\bar c}{(\bar u+\bar d)}, \frac{2 \bar
c}{(u+d)} and \frac{(c+ \bar c)}{\sum (q+\bar q)} are in agreement with other
similar calculations. Specifically, we find \Delta c=-0.009, \frac{\Delta
c}{{\Delta \Sigma}}=-0.02, \bar c=0.03 and \frac{(c+ \bar c)}{\sum (q+\bar
q)}=0.02 for the \chiQM parameters a=0.1, \alpha=0.4, \beta=0.7,
\zeta_{E866}=-1-2 \beta, \zeta_{NMC}=-2-2 \beta and \gamma=0.3, the latter
appears due to the extension of SU(3) to SU(4).Comment: 10 RevTeX pages. Accepted for publication in Phys. Rev.
Heavy quarkonium 2S states in light-front quark model
We study the charmonium 2S states and , and the bottomonium
2S states and , using the light-front quark model and the
2S state wave function of harmonic oscillator as the approximation of the 2S
quarkonium wave function. The decay constants, transition form factors and
masses of these mesons are calculated and compared with experimental data.
Predictions of quantities such as Br are made. The
2S wave function may help us learn more about the structure of these heavy
quarkonia.Comment: 5 latex pages, final version for journal publicatio
SIMULTANEOUS OBSERVATIONS of GIANT PULSES from the CRAB PULSAR, with the MURCHISON WIDEFIELD ARRAY and PARKES RADIO TELESCOPE: IMPLICATIONS for the GIANT PULSE EMISSION MECHANISM
We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5σ and 6.5σ, respectively. We detected 51% of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of -3.6 > α > -4.9 (Sv ∝ vα). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than 100% correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from -3.00 at 1382 MHz, to -2.85 at 192 MHz
Light-cone QCD Sum Rules for the Baryon Electromagnetic Form Factors and its magnetic moment
We present the light-cone QCD sum rules up to twist 6 for the electromagnetic
form factors of the baryon. To estimate the magnetic moment of the
baryon, the magnetic form factor is fitted by the dipole formula. The numerical
value of our estimation is , which is in
accordance with the experimental data and the existing theoretical results. We
find that it is twist 4 but not the leading twist distribution amplitudes that
dominate the results.Comment: 13 page, 7 figures, accepted for publication in Euro. Phys. J.
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh
network (WMN). Keeping in mind the critical requirement of security and user
privacy in WMNs, this chapter provides a comprehensive overview of various
possible attacks on different layers of the communication protocol stack for
WMNs and their corresponding defense mechanisms. First, it identifies the
security vulnerabilities in the physical, link, network, transport, application
layers. Furthermore, various possible attacks on the key management protocols,
user authentication and access control protocols, and user privacy preservation
protocols are presented. After enumerating various possible attacks, the
chapter provides a detailed discussion on various existing security mechanisms
and protocols to defend against and wherever possible prevent the possible
attacks. Comparative analyses are also presented on the security schemes with
regards to the cryptographic schemes used, key management strategies deployed,
use of any trusted third party, computation and communication overhead involved
etc. The chapter then presents a brief discussion on various trust management
approaches for WMNs since trust and reputation-based schemes are increasingly
becoming popular for enforcing security in wireless networks. A number of open
problems in security and privacy issues for WMNs are subsequently discussed
before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the
author's previous submission in arXiv submission: arXiv:1102.1226. There are
some text overlaps with the previous submissio
Measurements of decays into Vector- Tensor final states
Decays of the into vector plus tensor meson final states have been
studied with 14 million events collected with the BESII detector.
Branching fractions of \psi(2S) \rt \omega f_{2}(1270), ,
and are
determined. They improve upon previous BESI results and confirm the violation
of the "12%" rule for decays to VT channels with higher precision.Comment: 7 pages, 7 figures and 2 table
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Wind modelling of very massive stars up to 300 solar masses
Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A
factor that is often overlooked is that there might be a difference between the
current and initial masses of the most massive stars, as a result of mass loss.
We present Monte Carlo mass-loss predictions for very massive stars in the
range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using
our new dynamical approach, we find an upturn in the mass-loss vs. Gamma
dependence, at the point where the winds become optically thick. This coincides
with the location where wind efficiency numbers surpass the single-scattering
limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a
transition from common O-type winds to Wolf-Rayet characteristics at the point
where the winds become optically thick. This transitional behaviour is also
revealed with respect to the wind acceleration parameter beta, which starts at
values below 1 for the optically thin O-stars, and naturally reaches values as
high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding
concerns the transition in spectral morphology of the Of and WN characteristic
He II line at 4686 Angstrom. When we express our mass-loss predictions as a
function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss
Gamma dependence that is consistent with a previously reported power-law Mdot
propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling
approach. When we express Mdot in terms of both Gamma and stellar mass, we find
Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that
the Gamma-effect on the mass-loss predictions is much stronger than that of an
increased helium abundance, calling for a fundamental revision in the way mass
loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages,
10 figures
- …