503 research outputs found

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Contributions to Efficient Resource Management in Virtual Networks

    Full text link

    Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics

    Full text link
    When Lenz proposed a simple model for phase transitions in magnetism, he couldn't have imagined that the "Ising model" was to become a jewel in field of equilibrium statistical mechanics. Its role spans the spectrum, from a good pedagogical example to a universality class in critical phenomena. A quarter century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing a seemingly trivial modification to the Ising lattice gas, they took it into the vast realms of non-equilibrium statistical mechanics. An abundant variety of unexpected behavior emerged and caught many of us by surprise. We present a brief review of some of the new insights garnered and some of the outstanding puzzles, as well as speculate on the model's role in the future of non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting, Rutgers, NJ (December, 2008

    High-spin structures in the neutron-rich isotopes Mn57-60

    Get PDF
    Excited states in the neutron-rich isotopes Mn57-60 have been studied with fusion-evaporation reactions induced by Ca48 beams at 130 MeV on C13,14 targets. Level schemes have been deduced reaching spins of ∼16□ and ∼27□/2 in the odd-odd and odd-even isotopes, respectively. States with natural parity within an fp model space are compared to the predictions of large-scale shell-model calculations using the recently developed GXPF1A effective interaction. Quasirotational structures are evident in all of the isotopes and are discussed in terms of the deformation-driving potential of the ν1g9/2 intruder orbital. It is apparent that an enlarged model space, incorporating at least the 1g9/2 intruder state, is necessary to reproduce the observed experimental systematics in a more satisfactory manner

    Yrast structures in the neutron-rich isotopes Fe59,60 and the role of the g9/2 orbital

    Get PDF
    The structure of the neutron-rich isotopes Fe59,60 has been studied with the Gammasphere detector array using fusion-evaporation reactions. Level schemes for these nuclei are presented which have been extended to spins of ∼20. Both isotopes exhibit regular, near-yrast γ-decay sequences which are generated by the intrusion of the g9/2 orbital into the fp shell-model space. Lower-spin, natural-parity levels are discussed within the context of shell-model calculations using the GXPF1A interaction in the full fp model space. Experimental features of the high-spin bands are compared with total Routhian surface calculations

    Configurations and decay hindrances of high- K states in Hf 180

    Get PDF
    Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf180 with the Gammasphere array. Lifetimes in the ns-μs range were determined using centroid-shift and decay measurements within a μs coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to Kπ=(18-) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Rotational bands built on three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well

    High-spin, multiparticle isomers in Sb121,123

    Get PDF
    Isomers in near-spherical Z=51, antimony isotopes are reported here for the first time using fusion-fission reactions between Al27 and a pulsed Hf178 beam of energy, 1150 MeV. γ rays were observed from the decay of isomeric states with half-lives, T1/2=200(30) and 52(3)μs, and angular momenta I=(252) and Iπ=232+, in Sb121,123, respectively. These states are proposed to correspond to ν(h112)2 configurations, coupled to an odd d52 or g72 proton. Nanosecond isomers were also identified at Iπ=192- [T1/2=8.5(5) ns] in Sb121 and Iπ=(152-) [T1/2=37(4) ns] in Sb123. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes

    Magnetic rotation and quasicollective structures in 58Fe: Influence of the νg9/2 orbital

    Get PDF
    The structure of 58Fe was investigated at Gammasphere using 48Ca(13 ,14C,xn) fusion-evaporation reactions at a beam energy of 130 MeV. The level scheme has been revised and extended to J∼17 and an excitation energy of 16.6 MeV. Regular band structures consisting of low-energy ΔJ=1 transitions have been observed at moderate spin (J∼8-15) and are candidates for magnetic rotational bands. Self-consistent tilted-axis-cranking calculations within a relativistic mean-field theory were applied to investigate these bands and were found to reproduce the experimental results well. In other parts of the level scheme, quasirotational bands composed of stretched-E2 transitions have been extended to high spin, and other new bands have been identified. Positive-parity experimental states were compared to predictions of the spherical shell model using the GXPF1A, KB3G, and FPD6 effective interactions in the fp model space. The projected shell model, with a deformed quasiparticle basis including the neutron νg9/2 orbital, was applied to interpret regular ΔJ=2 band structures that extend beyond the maximum spin available for π[(f7/2)-2]- ν[(p3/2f 5/2p1/2)4] configurations and exhibit features characteristic of rotational alignment. It is clear that the νg9/2 intruder orbital plays a crucial role in describing the quasirotational structures in this nucleus, even starting as low as J∼5

    Serum and Tissue Biomarkers Associated With Composite of Relevant Endpoints for Sjögren Syndrome (CRESS) and Sjögren Tool for Assessing Response (STAR) to B Cell–Targeted Therapy in the Trial of Anti–B Cell Therapy in Patients With Primary Sjögren Syndrome (TRACTISS)

    Get PDF
    Objective This study aimed to identify peripheral and salivary gland (SG) biomarkers of response/resistance to B cell depletion based on the novel concise Composite of Relevant Endpoints for Sjögren Syndrome (cCRESS) and candidate Sjögren Tool for Assessing Response (STAR) composite endpoints. Methods Longitudinal analysis of peripheral blood and SG biopsies was performed pre- and post-treatment from the Trial of Anti–B Cell Therapy in Patients With Primary Sjögren Syndrome (TRACTISS) combining flow cytometry immunophenotyping, serum cytokines, and SG bulk RNA sequencing. Results Rituximab treatment prevented the worsening of SG inflammation observed in the placebo arm, by inhibiting the accumulation of class-switched memory B cells within the SG. Furthermore, rituximab significantly down-regulated genes involved in immune-cell recruitment, lymphoid organization alongside antigen presentation, and T cell co-stimulatory pathways. In the peripheral compartment, rituximab down-regulated immunoglobulins and auto-antibodies together with pro-inflammatory cytokines and chemokines. Interestingly, patients classified as responders according to STAR displayed significantly higher baseline levels of C-X-C motif chemokine ligand-13 (CXCL13), interleukin (IL)-22, IL-17A, IL-17F, and tumor necrosis factor-α (TNF-α), whereas a longitudinal analysis of serum T cell–related cytokines showed a selective reduction in both STAR and cCRESS responder patients. Conversely, cCRESS response was better associated with biomarkers of SG immunopathology, with cCRESS-responders showing a significant decrease in SG B cell infiltration and reduced expression of transcriptional gene modules related to T cell costimulation, complement activation, and Fcγ-receptor engagement. Finally, cCRESS and STAR response were associated with a significant improvement in SG exocrine function linked to transcriptional evidence of SG epithelial and metabolic restoration. Conclusion Rituximab modulates both peripheral and SG inflammation, preventing the deterioration of exocrine function with functional and metabolic restoration of the glandular epithelium. Response assessed by newly developed cCRESS and STAR criteria was associated with differential modulation of peripheral and SG biomarkers, emerging as novel tools for patient stratification
    corecore