34 research outputs found

    Preface to special issue VII workshop on catastrophic disruption in the Solar System

    No full text
    Planetary and Space Science, 57, pp. 109-110, http://dx.doi.org./10.1016/j.pss.2008.11.013International audienc

    Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences

    No full text
    Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta-like spectral properties (Vestoids) were measured at visible and near-infrared wavelengths (similar to0.44 to similar to1.65 mum). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled "non-family" members that reside just outside the semi-major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a-e-i) match of these "non-family" objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut-off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine-rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best-known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine-grained eucritic material on their surfaces

    MARCO POLO: near earth object sample return mission

    Get PDF
    MARCO POLO is a joint European--Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using ``touch and go'' manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth's atmosphere
    corecore