3,473 research outputs found

    In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV

    Get PDF
    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.110Ysciescopu

    New Uropodina records and species from the Korean Peninsula (Acari: Mesostigmata)

    Get PDF
    Thirteen Mesostigmata species are recorded from the Korean Peninsula. Two of them Nenteria koreana and Leonardiella koreana spp. nov. are new to science, and further eleven species are recorded for the first time from the Korean Peninsula

    Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity

    Get PDF
    Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (A(Platelet)) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index I-A.T based on A(Platelet) and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (mu) can be estimated by measuring W. Biophysical parameters (IA.T, mu) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions.119Ysciescopu

    Investigations into the dehulling of pigeon peas and mung beans

    Get PDF
    Non-Peer ReviewedLegumes provide a rich source of protein for animal and human consumption. They also supply a substantial amount of minerals and vitamins. Currently the world production of legumes is estimated to be 57.5 million metric tonnes. After harvest, pigeon peas (Cajanus cajan L.) and mung beans (Vigna radiata L.) are dehulled to improve cooking and nutritional qualities and to reduce cooking time. Pigeon peas and mung beans can be consumed as dehulled splits, whole, canned, boiled, roasted or ground into flour to make a variety of desserts, snacks and main dishes. These legumes are hard to dehull because of the presence of mucilages and gums which form a strong bond between the hulls and the cotyledons. To improve the dehulling characteristics of these legumes, a tangential abrasive dehulling device (TADD) was used to investigate their dehulling characteristics. Different treatments consisting of heating, soaking and heating, steaming and drying in addition to tempering were investigated. The control samples yielded less dehulled kernels and generated more fines for both pigeon peas and mung beans. Steaming at 98.0oC for 10 min and heating at 120oC for 10 min followed by tempering for 24 h yielded more dehulled kernels for both pigeon peas and mung beans compared to the other treatments

    The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001) surface

    Get PDF
    We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001) surface is compared with that of a W and C adatom on a WC (0001) surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC

    Novel water filtration of saline water in the outermost layer of mangrove roots

    Get PDF
    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.117Ysciescopu

    Evaluation of fermented whole crop wheat and barley feeding on growth performance, nutrient digestibility, faecal volatile fatty acid emission, blood constituents, and faecal microbiota in growing pigs

    Get PDF
    This study was conducted to determine the effects of feeding diets with fermented whole crop wheat (FWW) and fermented whole crop barley (FWB) on growth performance, nutrient digestibility, blood constituents, faecal volatile fatty acid (VFA) emission and faecal microbiota in growing pigs. A total of 200 growing pigs were randomly allotted to five treatments with eight replicates per treatment and five pigs per replicate. Dietary treatments consisted of i) CON (basal diet), ii) 0.5% FWW (CON + 0.5% fermented whole crop wheat), iii) 1.0% FWW (CON + 1.0% fermented whole crop wheat), iv) 0.5% FWB (CON + 0.5% fermented whole crop barley), and v) 1.0% FWB (CON + 1.0% fermented whole crop barley). The digestibility of total dietary fibre was significantly higher in pigs fed FWW diets. The faecal emissions of VFA of pigs fed the fermented treatments was increased significantly compared with CON. Concentrations of cortisol and triglyceride in blood of pigs fed 1.0% FWW were significantly lower than pigs fed CON diets. The pigs fed 1.0% FWB diets had a significantly decreased level of total cholesterol in blood compared with CON. In conclusion, the current results indicated that diets supplemented with FWW and FWB could increase faecal VFA emission and reduce concentration of triglyceride and cortisol, while 0.5% and 1.0% FWW had no negative effects on growth performance, and could increase digestibility of dietary fibre in growing pigs.Keywords: Dietary fibre, faecal short-chain fatty acid emissions, fermented feed, serum parameter, swin

    Southern Ocean Control of 2°C Global Warming in Climate Models

    Get PDF
    Global warming will soon reach the Paris Agreement targets of 1.5°C/2°C temperature increase above pre-industrial levels. Under a business-as-usual scenario, the time to reach these targets varies widely among climate models. Using Coupled Model Intercomparison Project Phase 5 and 6, we show that a 2°C global warming is determined by Southern Ocean (SO) state closely tied with a low-level cloud (LLC) amount feedback strength during reference (1861–1900) period; climate models with cold SO tend to accompany more low-level cloudiness and Antarctic sea ice concentration due to a strong LLC amount feedback. Consequently, initially cold SO models tend to simulate a fast global warming by absorbing more downward shortwave radiation compared to initially warm SO models because more LLC disappears due to a strong LLC amount feedback during the 2°C rise. Our results demonstrate that climate models that correctly simulate initial SO state can improve 2°C warming projections with reduced uncertainties.publishedVersio

    Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C

    Full text link
    Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and n+GaAs:Si samples implanted under the same conditions, transport and magnetic properties show marked differences. Transport measurements show anomalies, consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as well as the extraordinary Hall Effect up to the observed magnetic ordering temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K

    Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment

    Get PDF
    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0�� �� 2.4��, with a sliding angle of 12.3�� �� 6.4��. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9��, with a sliding angle less than 1��. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching. ? 2017 The Author(s).114Ysciescopu
    corecore