15 research outputs found

    Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics

    No full text
    We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics

    On General Solutions for Field Equations in Einstein and Higher Dimension Gravity

    Full text link
    We prove that the Einstein equations can be solved in a very general form for arbitrary spacetime dimensions and various types of vacuum and non-vacuum cases following a geometric method of anholonomic frame deformations for constructing exact solutions in gravity. The main idea of this method is to introduce on (pseudo) Riemannian manifolds an alternative (to the Levi-Civita connection) metric compatible linear connection which is also completely defined by the same metric structure. Such a canonically distinguished connection is with nontrivial torsion which is induced by some nonholonomy frame coefficients and generic off-diagonal terms of metrics. It is possible to define certain classes of adapted frames of reference when the Einstein equations for such an alternative connection transform into a system of partial differential equations which can be integrated in very general forms. Imposing nonholonomic constraints on generalized metrics and connections and adapted frames (selecting Levi-Civita configurations), we generate exact solutions in Einstein gravity and extra dimension generalizations.Comment: latex 2e, 11pt, 40 pages; it is a generalizaton with modified title, including proofs and additional results for higher dimensional gravity of the letter v1, on 14 pages; v4, with new abstract, modified title and up-dated references is accepted by Int. J. Theor. Phy

    On the Dirac Eigenvalues as Observables of the on-shell N=2 D=4 Euclidean Supergravity

    Full text link
    We generalize previous works on the Dirac eigenvalues as dynamical variables of the Euclidean gravity and N=1 D=4 supergravity to on-shell N=2 D=4 Euclidean supergravity. The covariant phase space of the theory is defined as as the space of the solutions of the equations of motion modulo the on-shell gauge transformations. In this space we define the Poisson brackets and compute their value for the Dirac eigenvalues.Comment: 10 pages, LATeX fil

    Broken scale invariance, gravity mass, and dark energy in modified einstein gravity with two measure finsler like variables

    No full text
    We study new classes of generic off-diagonal and diagonal cosmological solutions for effective Einstein equations in modified gravity theories (MGTs), with modified dispersion relations (MDRs), and encoding possible violations of (local) Lorentz invariance (LIVs). Such MGTs are constructed for actions and Lagrange densities with two non-Riemannian volume forms (similar to two measure theories (TMTs)) and associated bimetric and/or biconnection geometric structures. For conventional nonholonomic 2 + 2 splitting, we can always describe such models in Finsler-like variables, which is important for elaborating geometric methods of constructing exact and parametric solutions. Examples of such Finsler two-measure formulations of general relativity (GR) and MGTs are considered for Lorentz manifolds and their (co) tangent bundles and abbreviated as FTMT. Generic off-diagonal metrics solving gravitational field equations in FTMTs are determined by generating functions, effective sources and integration constants, and characterized by nonholonomic frame torsion effects. By restricting the class of integration functions, we can extract torsionless and/or diagonal configurations and model emergent cosmological theories with square scalar curva-ture, R2, when the global Weyl-scale symmetry is broken via nonlinear dynamical interactions with nonholonomic constraints. In the physical Einstein–Finsler frame, the constructions involve: (i) nonlinear re-parametrization symmetries of the generating functions and effective sources; (ii) effective potentials for the scalar field with possible two flat regions, which allows for a unified description of locally anisotropic and/or isotropic early universe inflation related to acceleration cosmology and dark energy; (iii) there are “emergent universes” described by off-diagonal and diagonal solutions for certain nonholonomic phases and parametric cosmological evolution resulting in various inflationary phases; (iv) we can reproduce massive gravity effects in two-measure theories. Finally, we study a reconstructing procedure for reproducing off-diagonal FTMT and massive gravity cosmological models as effective Einstein gravity or Einstein–Finsler theories. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Rotation curve and dark matter halo profile in Finsler geometry

    No full text
    corecore