6 research outputs found

    Deformations of circle-valued Morse functions on surfaces

    No full text
    Let M be a smooth connected orientable compact surface and let Fcov(M,S1) be a space of all Morse functions f : M → S₁ without critical points on ∂M such that, for any connected component V of ∂M, the restriction f : V → S₁ is either a constant map or a covering map. The space Fcov(M,S₁) is endowed with the C ∞-topology. We present the classification of connected components of the space Fcov(M,S₁). This result generalizes the results obtained by Matveev, Sharko, and the author for the case of Morse functions locally constant on ∂M.Нехай M — гладка зв'язна орієнтовна компактна поверхня. Позначимо через Fcov(M,S₁) простір усіх відображень Морса f:M→S₁, які не мають критичних точок на ∂M, а для кожної компоненти зв'язності V межі дМ обмеження f:V→S₁ є або постійним або накриваючим відображенням. Наділимо Fcov(M,S₁) топологією C∞. У статті наведено класифікацію компонент зв'язності простору Fcov(M,S₁). Цей результат узагальнює результати С. В. Матвєєва, В. В. Шарка та автора про функції Морса, що є локально постійними на ∂M

    Kernel of a map of a shift along the orbits of continuous flows

    No full text
    Let F:M × R → M be a continuous flow on a topological manifold M. For every subset V⊂M, we denote by P(V) the set of all continuous functions ξ:V→R such that F(x,ξ(x))=x for all x∈V. These functions vanish at nonperiodic points of the flow, while their values at periodic points are integer multiples of the corresponding periods (in general, not minimal). In this paper, the structure of P(V) is described for an arbitrary connected open subset V⊂M.Нехай F:M×R→M — неперервний потік на топологічному многовиді M. Для кожної підмножини V⊂M позначимо через P(V) множину всіх неперервних функцій ξ:V→R , що задовольняють умову F(x,ξ(x))=x для всіх x∈V. Такі функції набувають нульового значення в неперіодичних точках потоку, а в періодичних точках їх значення є цілими кратними відповідних періодіб (в загальному не мінімальними). В статті описано структуру P(V) для довільної відкритої зв'язної підмножини V⊂M

    Geometry of integrable dynamical systems on 2-dimensional surfaces

    Full text link
    This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.Comment: 31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamic

    Symmetries of center singularities of plane vector fields

    No full text
    Let D² ⊂ R² be a closed unit 2-disk centered at the origin O ∈ R², and F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus topologically O is a «center» singularity. Let θ : D² \ {O} → (0, +∞ ) be the function associating with each z ≠ O its period with respect to F. In general, such a function can not be even continuously defined at O. Let also D⁺(F) — be the group of diffeomorphisms of D², which preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D² if and only if the 1-jet of F at O is a «rotation», that is, j¹F(O) = −y(∂/∂x) + x(∂/∂y). Then D⁺(F) is homotopy equivalent to a circle.Нехай D² ⊂ R² — замкнений одиничний 2-диск з центром у початку координат O ∈ R² i F — гладке векторне поле, для якого O є єдиною особливою точкою, а всi iншi орбiти поля F є простими замкненими кривими, що охоплюють O. Таким чином, топологiчно O є особливiстю типу «центр». Нехай θ : D² \ {O} → (0, +∞ ) — функцiя, що ставить у вiдповiднiсть кожнiй точцi z ≠ O її перiод вiдносно F. Взагалi кажучи, ця функцiя не може бути продовжена навiть до неперервної функцiї на всьому D². Нехай також D⁺(F) — група дифеоморфiзмiв D², що зберiгають орiєнтацiю i залишають iнварiантною кожну орбiту поля F. У статтi доведено, що θ продовжується до C∞-функцiї на всьому диску тодi i тiльки тодi, коли 1-струмiнь F у точцi O є «поворотом», тобто j¹F(O) = −y(∂/∂x) + x(∂/∂y). У цьому випадку група D⁺(F) гомотопiчно еквiвалентна до кола

    Symmetries of a center singularity of a plane vector fields

    No full text
    Let D² ⊂ R² be a closed unit 2-disk centered at the origin O ∈ R², and F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus topologically O is a „center” singularity. Let D⁺(F) be the group of all diffeomorphisms of D² which preserve orientation and orbits of F. Recently the author described the homotopy type of D⁺(F) under the assumption that the 1-jet j¹ F(O) of F at O is non-degenerate. In this paper degenerate case j¹ F(O) is considered. Under additional ” nondegeneracy assumptions” on F the path components of D⁺(F) with respect to distinct weak topologies are described. These conditions imply that for each h ∈ D⁺(F) its path component in D⁺(F) is uniquely determined by the 1-jet of h at O.Нехай D² ⊂ R² — замкнений одиничний двовимiрний диск з центром у початку координат O ∈ R² та F — гладке векторне поле таке, що O є єдиною особливою точкою F, а всi iншi орбiти — простими замкненими кривими, що огортають O один раз. Таким чином, топологiчно O є особливiстю типу центр. Нехай D⁺(F) — група всiх дифеоморфiзмiв D², що зберiгають орiєнтацiю та орбiти поля F. Нещодавно автором було описано гомотопiчний тип D⁺(F) за умови, що 1-струмiнь j¹F(O) поля F в O є невиродженим. У цiй статтi розглядається вироджений випадок j¹F(O). За додаткової умови невиродженостi на F описано компоненти лiнiйної зв’язностi простору D⁺(F) вiдносно рiзних слабких топологiй. З цих умов випливає, що для кожного h ∈ D⁺(F) його компонента лiнiйної зв’язностi в D⁺(F) єдиним чином визначається 1-струменем h в O

    Period functions for C⁰- and C¹-flows

    No full text
    Let F:M×R→M be a continuous flow on a manifold M, let V ⊂ M be an open subset, and let ξ:V→R be a continuous function. We say that ξ is a period function if F(x, ξ(x)) = x for all x ∈ V. Recently, for any open connected subset V ⊂ M; the author has described the structure of the set P(V) of all period functions on V. Assume that F is topologically conjugate to some C1-flow. It is shown in this paper that, in this case, the period functions of F satisfy some additional conditions that, generally speaking, are not satisfied for general continuous flows.Нехай F:M×R→M — неперервний потік на многовиді M, V⊂M — відкрита підмножина ξ:V→R - неперервна функція. Назвемо ξ функцією періодів, якщо F(x,ξ(x))=x для всіх x∈V. Нещодавно для кожної відкритої зв'язної множини V⊂M автором було описано структуру множини P(V) всіх функцій періодів на V. Припустимо, що F є топологічно спряженим до деякого потоку класу C1. У даній роботі показано, що тоді функції періоду F задовольняють додаткові умови, які, взагалі кажучи, не виконуються для загальних неперервних потоків
    corecore