16 research outputs found

    Two-temperature relaxation and melting after absorption of femtosecond laser pulse

    Full text link
    The theory and experiments concerned with the electron-ion thermal relaxation and melting of overheated crystal lattice constitute the subject of this paper. The physical model includes two-temperature equation of state, many-body interatomic potential, the electron-ion energy exchange, electron thermal conductivity, and optical properties of solid, liquid, and two phase solid-liquid mixture. Two-temperature hydrodynamics and molecular dynamics codes are used. An experimental setup with pump-probe technique is used to follow evolution of an irradiated target with a short time step 100 fs between the probe femtosecond laser pulses. Accuracy of measurements of reflection coefficient and phase of reflected probe light are ~1% and \sim 1\un{nm}, respectively. It is found that, {\it firstly}, the electron-electron collisions make a minor contribution to a light absorbtion in solid Al at moderate intensities; {\it secondly}, the phase shift of a reflected probe results from heating of ion subsystem and kinetics of melting of Al crystal during 0 where tt is time delay between the pump and probe pulses measured from the maximum of the pump; {\it thirdly} the optical response of Au to a pump shows a marked contrast to that of Al on account of excitation of \textit{d}-electronsComment: 6th International Conference on Photo-Excited Processes and Applications 9-12 Sep 2008, Sapporo, Japan, http://www.icpepa6.com, the contributed paper will be published in Applied Surface Science(2009

    Nuclear emulsion with molybdenum filling for observation of ββ\beta\beta decay

    Full text link
    The usage of nuclear emulsion with molybdenum filling for observation of ββ\beta\beta decay are shown to be possible. Estimates for 1 kg of 100^{100}Mo with zero background give the sensitivity for the 0νββ0\nu\beta\beta decay of 100^{100}Mo at the level of 1.51024\sim 1.5\cdot 10^{24} y for 1 year of measurement.Comment: 7 pages, 3 figure

    Recent advances in neutrinoless double beta decay search

    Full text link
    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay (0ν0\nu-DBD) experimental discovery could be the ultimate answer to some delicate questions of elementary particle and nuclear physics. The Majorana description of neutrinos allows the 0ν0\nu-DBD process, and consequently either a mass value could be measured or the existence of physics beyond the standard should be confirmed without any doubt. As expected, the 0ν0\nu-DBD measurement is a very difficult field of application for experimentalists. In this paper, after a short summary of the latest results in neutrino physics, the experimental status, the R&D projects, and perspectives in 0ν0\nu-DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic
    corecore