13 research outputs found

    Strangeness Production and Ultrarelativistic Cascades

    Get PDF
    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy ion-ion collisions is applied to the production of strangeness at SPS energies s=17−20\sqrt{s}=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons, including strange mesons, by separating the dynamics into two steps, a fast cascade involving only nucleons in the original colliding relativistic ions followed, after an appropriate delay, by multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS. A byproduct, obtained here in preliminary calculations, is a description of strangeness production in the collision of massive ions.Comment: 10 pages, 5 figure

    The H-Dibaryon and the Hard Core

    Full text link
    The H dibaryon, a single, triply magic bag containing two up, two down and two strange quarks, has long been sought after in a variety of experiments. Its creation has been attempted in K−K^-, proton and most recently in relativistic heavy ion induced reactions. We concentrate on the latter, but our conclusions are more generally applicable. The two baryons coalescing to form the single dibaryon, likely ΛΛ\Lambda \Lambda in the case of heavy ions, must penetrate the short range repulsive barrier which is expected to exist between them. We find that this barrier can profoundly affect the probability of producing the H state, should it actually exist.Comment: 9 pages including 4 figure

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    Low--Energy Behavior of Two--Point Functions of Quark Currents

    Full text link
    We discuss vector, axial-vector, scalar and pseudoscalar two-point functions at low and intermediate energies. We first review what is known from chiral perturbation theory, as well as from a heat kernel expansion within the context of the extended Nambu-Jona-Lasinio (ENJL) model of ref. \cite{12}. In this work we derive then these two-point functions to all orders in the momenta and to leading order in 1/Nc1/N_c. We find an improved high-energy behaviour and a general way of parametrizing them that shows relations between some of the two-point functions, which are also valid in the presence of gluonic interactions. The similarity between the shape of the experimentally known spectral functions and the ones we derive, is greatly improved with respect to those predicted by the usual constituent quark like models. We also obtain the scalar mass MS=2MQM_S = 2 M_Q independent of the regularization scheme. In the end, we calculate fully an example of a nonleptonic matrix element in the ENJL--model, the π+−π0\pi^+-\pi^0 electromagnetic mass difference and find good agreement with the measured value.Comment: 37 pages + 6 uuencoded figures, CERN TH 6924/93, CPT-93/P.2917, NORDITA 93/43-N,

    A Multi-Phase Transport model for nuclear collisions at RHIC

    Get PDF
    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider, we have developed a multi-phase transport model that includes both initial partonic and final hadronic interactions. Specifically, the parton cascade model ZPC, which uses as input the parton distribution from the HIJING model, is extended to include the quark-gluon to hadronic matter transition and also final-state hadronic interactions based on the ART model. Predictions of the model for central Au on Au collisions at RHIC are reported.Comment: 7 pages, 4 figure

    Covariance of Antiproton Yield and Source Size in Nuclear Collisions

    Full text link
    We confront for the first time the widely-held belief that combined event-by-event information from quark gluon plasma signals can reduce the ambiguity of the individual signals. We illustrate specifically how the measured antiproton yield combined with the information from pion-pion HBT correlations can be used to identify novel event classes.Comment: 8 pages, 5 figures, improved title, references and readability; results unchange

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    Flavor Production in Pb(160AGeV) on Pb Collisions: Effect of Color Ropes and Hadronic Rescattering

    Get PDF
    Collective interactions in the preequilibrium quark matter and hadronic resonance gas stage of ultrarelativistic nucleus-nucleus collisions are studied in the framework of the the transport theoretical approach RQMD. The paper reviews string fusion into color ropes and hadronic rescattering which serve as models for these interactions. Hadron production in central Pb(160AGeV) on Pb collisions has been calculated. The changes of the final flavor composition are more pronounced than in previous RQMD studies of light ion induced reactions at 200AGeV. The ratio of created quark pairs ssˉs\bar{s}/(uuˉu\bar{u}+ddˉd\bar{d}) is enhanced by a factor of 2.4 in comparison to pppp results. Color rope formation increases the initially produced antibaryons to 3 times the value in the `NN mode', but only one quarter of the produced antibaryons survives because of subsequent strong absorption. The differences in the final particle composition for Pb on Pb collisions compared to S induced reactions are attributed to the hadronic resonance gas stage which is baryon-richer and lasts longer.Comment: 60 pages + 11 postscript figures (uuencoded and included
    corecore