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ABSTRACT

The Standard model of electro-weak interactions is derived from a Nambu, Jona-Lasinio

type four-fermion interaction, which is assumed to result from a more basic theory valid

above a very high scale A. The masses of the gauge bosons and the Higgs are then produced

by dynamicai symmetry breaking of the Nambu model at an intermediate scale #, and

are evolved back to experimental energies via the renormalisation group equations of the

Standard model. The weak angle sin2(_w) is predicted to be ] at the scale tr, as in grand

unified theories, and is evolved back to the experimental value at scale Mw, thus determining

. # ,,_ 10Z3GeV. Predictions for the ratios of the masses of the gauge and the Higgs bosons to

the top quark mass, at experimental energies, are also obtained.
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1. Introduction
i

Recently, in very interesting works, Nambu [1], as well as Bardeen, Hill and Lindner [2], and

others [3], have suggested replacing the Higgs mecha_fism [4] in the Standard model [5] with

a dynamical symmetry breaking approach generated by _'our-fermion interactions of the top

.... quark. In fact, their model for the Higgs sector is that of Nambu and Jona-Lasinio [6], and

one may recover the usual Higgs mesoa as a composite of t and [. Oneof the present authors

as well as others [7] have followed the original NJ L work by i_ltroducing vector as well as

scalar four fermion interactions, thereby also generating vector mesons as composite fields

in this model. Here we attempt to combine these two approaches , to generate the entire

electro-weak interaction from a four-fermion effective lagrangian. The W, Z and Higgs

then appear as coherent composites of all quarks and leptons, not just the heaviest quark.

There are clear problems with such an approach which will become evident, but there are

also possible rewards.

The effective four fermion theory of thispaper is assumed to be the correct interaction at

some high scale A, and could presumably be obtained as the low energy limit of some more

basic theory, applicable at even higher energy; for instance by integrating Out the high energy

non-fermionic degrees of freedom above the scale A. Subsequently, we integrate the single

fermion loops of the four-fermion theory to obtain an effective action at an intermediate

scale/_. We find that the meson sector of the theory induced by the NLJ model at the scale

# can be, under certain restrictive conditions, cast into the form of the SUL(2) x UR(1)

Standard model. Below the scale # the effects of the extended SU(3) x SU(2) x U(1)

interactions are included through the usual renormalisation group equations. This parallels

the method of reference [2]; they differ inperforming a matching at the scale A, where the

boson wave function renormalisations vanish, through compositeness conditions. As a caveat

we must add that this procedure is clearly somewhat arbitrary for the non-renormMisable

NJL model, but like [2] , we suppose that some limited degree of fine-tuning eliminates

the quadratic divergences from the theory and leaves logarithmic divergences which can be

handled in the renormalisation group scheme.

The masses and mixing angles for the composite particles are then obtained at an inter-

' mediate but nevertheless still large scale _ in our approach. For example, sin2(#w) is found

to be a simple rational number, reminiscent of grand unified models; and in addition the W

and Z _masses are very. simply related to the top quark mass. Several authors, in particular

Marciano [9] and Nambu [1] have pointed out that one mechanism probably generates mass

for both the top quark and the massive vector bosons, since the W, Z and top all seem to

lie at more or less the same scale. Since, as we _how, the standard electroweak theory is
, ,
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recovered at the intermediate scale #, by imposing what seem to be necessary consistency

conditions on the effective interaction for the composite Higgs and vector bosons, we assume

that the masses, etc., may be taken as bol.mdary conditions [2] for the standard model renor-

malisation group equations [10], and evolved downward as usual, to yield a determination

of # and a prediction of the ratio _ at present experimental energies. The indefinitenessMw

of the scales ,'_'and #, and the direct use of the parameters of the effective lagrangian for

the composites as boundary conditions of course is reflected ii1 a similar indefiniteness of the

predictions we make.

We note that although we have not attempted to include the strong interactions explicitly

here, it is clear that one could generate composite gluons and massive vector bosons at the

same time in an extended version of this same scheme.

2. The Model

The model is defined by'

_G_(¢7,,Y_) 2 'G2w(]/7,rPL¢) 2 (2.1)L= - ½ '] - - .

Here ¢ = [¢i] is a column vector: i = {tL:tR, bL,bR, eL,eR, UL}, and this pattern is of

course duplicated for each generation of fermions that is present. Gs and Gw are universal

couplings for the isoscalar and isovector interactions respectively, while Y and r are defined

in the usual fashion. PL = ½(1 --_/_) is the projector on left-handed fermions. Breaking

of weak isospin symmetry is introduced via the scalar coupling Gs, which is taken to be a

diagonal matrix; we could of course, as suggested in reference [2], incorporate Cabibbo-like

mixings between the generations by allowing Gs also to have off-diagonal elements, but this

is an added complication which we omit for now. We axe also employing an Euclidean metric

with %,_ = -1. The scalar-pseudoscalar interaction above has been treated in a somewhat

cavalier fashion, which however has no profound consequences for what follows. The choice

made in equation (2.1) would seem to be unique if the standard model for the quark-boson

interactions is to be recovered, and could be derived for instance by the introduction of very

massive vector bosons W_, B_ at scale A. The usual W and Z then arise from the lagrangian

in Eq(2.1), as much lighter composite images. The couplings Gs, G B, Gw have dimensions

[L]-1 as required by the four fermion coupling in d = 4, and are later demonstrated to be

inversely proportional to the cutoff scale A. As in references [11] we construct the meson

lagrangian using the methods of Gross and Neveu,[12]. Auxiliary fields F _ [as Tri,B, ', W_]
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are introduced into the partition function:

L._= ½(.'+ (.')_)+,½(B.+ ( )+ JR
,(2,2)

• Shifting the fields according to:

a = ct' + _Gs@ + Js/Gs B. B' -. , = . + GB'@"y.Y¢ + JB/GB.,

rr = Tr' + i6Gs75_ + J./Gs W2 = W 'k k /G, , . +GW_Tur PLt/"+ Jw w (2.3)

then cancels the four fermion interactions in favour of a coupling between the auxiliary fields

and the fermions. The partition fanction is then essentially that for the coupled meson-

fermion theory. We note that at this level gauge invariance is broken only by the quadratic

classical terms Let for the auxiliary fields. The lagrangian for tim shifted fields (in which

primes may be dropped) then reads:

z,'= ,_,a¢+ .'-(,._+(,,-')_)+ }B.'+ }(w,.')_,
A = iT.D. + Gs(ct + irr. r75)

(2,4)

where Dr is the covariant derivative:

D_, = O. iGsBuY iGwW_ . rPL (2,5)

The composite bosons, their propagators and their interactions are obtained by examining

the one fermion loop effective action:

I./! = &t,,,,,, -('rr lnA- Tr lnAo)

[ ] ,1 (_s+na +aw)
= Ia...-'rr |,n 1 -t i$2r,,M (2,6)

in which: , ,

fls = g + iii. r'ys = M + (_+ irl. r')'5) ,, (2.7)L

and we have defined scalar fields with the usual dimension by absorbing the coupling Gs:
I

r_= Gsa, II* = asII _ (2,S)

Since Gs is a matrix, II.r must be symmetrised on II and r. We have generated an expansion

of the action by introducing a scalar meson condensate (a) = ao and Gsao = M, so that

Ao = i_+ M is the Dirac operator for massive quarks propagating in the condensed vacuum.
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The model, so far is a normal theory of fermions and bosons, manifestly gauge invariant

in the fermion-boson sector, but lacking kinetic terms for both scalar and vector bosons.

The classical 'hard' mass terms in Eq(2.6) seem to violate gauge invariance at this point,

but we will deal with this matter later.

3. The Boson Action.

The masses and kinetic energies of ali mesons may be generated naturally from Eq(2;6). For

example in the purely scalar sector, eliminating linear terms in the fluctuation of cr around

the condensate leads to the (NJL) gap equation:

[ 1 G_]=I (31)'rr 0+M

and the second order action in f2s contains the kinetic energies and masses for the composite

scalar:

Zs=½Tr i¢+Z

(-02 + M2)2 (-02 + M2)2 (-02 + M2)2 (0"2)2 (3.2)

Third and fourth order terms complete the rest of the Higgs lagrangian. In' equation (3.2)

we have dropped terms with more than two deriva.tives of the fields, and we will follow this

procedure throughout the paper. It emerges in any case that these terms are of n0n-leading

order in the limit that the scale A is very large. The scales A and # enter the problem as

upper and lower limits for the loop integration in (3.1),which is then given explicitly by:

_A 2

1..,5-, ) m, +r,,4r--'7 i , k 2 + rn_ = 4-"_Ei niai (A2 -/_2 2 in + mi2:1, (3.3)

Combining (3.3) with (3.2) then cancels the 'hard' (proportional t0 A2) mass terms for the

scalar field, leaving only terms which vanish in the limit of no dynamical symmetry breaking,

that is, when ao= 0. assuming that the top quark dominates, m_ > > m_, (3.3) becomes a

condition on the top quaa'k coupling [1,2]'

a_ = 4_'2
nc(A2_m_ln(h._2r+l)l, , (3.4) ,

\ X"'t //

: with the colour degeneracy ne = 3. This fine tuning eliminates the A2 singularities from the

(NJL) theory, as Bardeen et. al. remm'k. A similar fine tuning, or consistency condition, will
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need to be imposed in ' the vector boson sector to guarantee gauge invariance and the strict

vanishing of the photon n:iass, The kinetic terms for the Higgsmay be put into normal form

by a wavefunction renormalisation'

a' -- Zy2_; ' ao = v = Z 2_0,

, c
(3,5)

_v,'e note here that this procedure is not without ambiguity [2], We will simply take

the approach in this paper ihat neither the Couplings nor the masses can be unambiguously

identified, This Will not however prevent us from making at least suggestive predictions,

as the ratios of masses and of couplings can be identifiedunambiguously. Assum._ng a

conventional normalisation for the scalar kinetic terms we fi.nd the standard NJL expression

for the mass of the Higgs scalar:

tr F 2Ml I"2]L'sj
= zs .,
~ 2m,(u)

(3.6)

We re-emphasise that the parameters of the Lagrangian we derive are given at, the Scale #,

considerablybelow the scale of the more basic theory at A.

It is now a straightforward, if somewhat tedious exerc!se to derive the vector boson action

up to second order in derivatives. The algebra is simplified if one wishes to obtain only the

terms of leading order in the limit that A becomes large (recall that the renormalisation

factor ZH " In(A/#), is diverging logarithmically as A _ c_), The surviving terms in this

fimitare:

I _tr k2 .+M2 ¼[YF_.,(B) + PLF_,,,(W)] 2

!

+ it r k2 + M 2 [li[7. , ,MI 2 - ['),uB.(yr - Ui)- '_{7.W., M}]2]x
, (3.7)

Where W_, = W_,, r. In this result integrals over four dimensional k and z axe understood.

The symbol F..(W) is the full, nonabelian field strength tensor. Apart from those mass

terms which are not proportional to M 2, these tei'ms axe just the gauge field sector of the
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standard model with spontaneous symmetry breaking by the Higgs mechanism. The addi-

tional fmc tuning, discussed above, will be necessary to guarantee that the hard mass terms

in (3,7) cancel against the c].assical quadratic terms which were introduced into the action

to cancel the four-fermion interaction, The analysis of the quadratic terms is somewhat

subtle, and we. present and discuss these terms in full detail in the next section.

I

4. Quadratic Vector Boson Action

Ali terms quadratic in boson fields arise from second order in the expansion of the logarithm

and may be written:

I(:z1 1 In I _ _b ,
=,b

T(:Z)already d_splayed. Not unexpect_edly, we set:with the term Xss (4.2)
Gsa = Gwfl = E,

with E a dimensional electric charge, together with the usual rotation in the a.belian sub-

sector:

W_ = _A. - <xZ_. I4.3)

We present only the final results for the fields W:t:, A, arid Z. These are:
r }0=- m,= "1"1a2 c4. )

rrti2")"__ "i 1,_

,202 }'_t 2

I'____(0_)_ ._ ' """-- ',-, + -_....... .Ia'>'_
i!_jE.)" = G_th:z___ ilQiitr Li.(_.O1 + mi:z ) - i (_02 +ml a)" ( -02 + rnil)a (4.5)

, l ":z (4.7)202 -m i-- a,4] ZaxA_x

I (0'? , "" ---- +

,= + tr
m, _02 ]
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r

=I [ ]l(,m) 2 _tr_'_v cw ,...,g (-02 +,_ )(-02 + m_), t_ g

+
(-0 2+m_.)(-0 2 + )v° 4. i 01

t

(02) 2-w_vr(K'E') 3tr )2 _0 2 _)2, (

+ tr (a:): w_ w;i
(-O_+ m_,)_(-0_+ rn_,)2 4,11)

The sums in the W-W terms are over generations only, the remaining traces are over Dirac

matrices and momentum, and the anti-symmetric symbols .4a_, are just the linear terms in

the covariant field tensors:

A_,x = (O,,A_ - O_A_).

The' symbols Q,, Ci, R,, T,, are defined by:

Qi- YLi "t'3i _ Yai2 F 2 2

c, = 2_Zewcs(vL +vL)- 2,ZG_¢_¢_+2csaw(Z_- _,_)¢_vL_

R, = G_#2(y2Li + y_,) - 2GBGwa#yL,r3, + G2wa2r3ir3,

T, = G_2yaiy[.._ - GBGwod3ya_'r3_ (4.12)

Performing sums over ali the fermions we find also

c,= -

Z, R_ = SngG_w (4.13)

where ng is the number of generations. As we have noted above, considerable simplification

would result if only terms of leading order in the limit A .--. c¢ were retained, were it not

for the very important requirement that the photon mass must, to all intents and purposes,
3

vanish identically, certainly also to several non-leading orders as well as leading order in the

large cutoff expansion. First we note a central result, which emerges from a consideration

of the hard mass terms in Equations(4.1-9). We reiterate that the hard mass terms axe just

those proportional to A2. In particular one finds:

IzA ~ A_G_(]# 2 -cfl) (4,14)

7



with leading In(A) terms vanishing identically, Thus the condition:

iCi = 0.

removes such terms from this off-diagonal action, and the next order are not present, Re-

markably, this same condition, in effect sin2(0w) = _ as in the SU(5) GUT [13] model,

removes the gauge non-invariant mass terms for the Z, W, and A fields, Given this relation,

the A_ terms in the photon mass are eliminated, provided a simple consistency condition,

in effect a second gap equation, is satisfied. To order A2 this condition is:

a_v#_x-" 2M 4_----_2nga_vA2 (4,13)1 =nc 4n.------y-Z_..i2Qi =

with n 9 the number of fermion generations. The In(A) terms in I(zM) and I(z,_) are auto-

matically eliminated. To this order one then obtains predictions for the W and Z masses

at the scale /_ in terms of the top qUark mass. The dimensionless couplings gl, and g_ of

the SU(2) and U(1) sectors may also be identified, though not unambiguously, as we have

discussed above. One finds:

g2 Gw g_ GB

2 - _' 5- = _ (4.16)

One can demonstrate the possibility of setting the photon mass to zero most simply m the

somewhat artificial case of equal quark and lepton masses mi(#) = m(#). _'hen, the choice

_"_iCi = 0 leads to the vanishing of IzK)tE', and /_ZA' Both the kinetic energy and the mass

matrices in the Z, A sector axe diagonal and one now requires more generally:

45' ')_ __1+ ( mt m_ Q_ (4.17)
= 2G_'n'(A24v2 Gn'fliz---_i \m_ + 1,2 - m_ + A2

1

with as stated earlier, lh(A) terms not present. Equation (4.17) simply defines G_v as a

function of A, say in the form:

2G2wA2n9
= 1 + a(A) (4.18)4_r2

_a,_.and in a fashion analogous to the gap equation (3.1). To lowest order G_v = ½,,

Imposing (4.17) adds corrections to the Z and W masses, but as is not hard to establish,

they are small. Should masses mi be unequal, one must first diagonalise the matrix of wave

function renormalisations [Z], rescale the resulting Z and A fields and finally rediagonalise

the mass matrix. This will require that B2 and G_v both be functions of A in order that

mass matrix is diagonal and the photon mass zero. This Will be detailed in further work,

but as we have indicated would not substantially alter the results.
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We now finally quote these results with the loop integrations running from # to A'

- ½T,)m
tr 2)2

tr 1 (02) 2 1
Zz = _i _ (_02 + mi2)4 iri

• (4.19)

We find

'M} (4 20)' = = Z---[ '

ignoring the mass difference, i, (4.19), and perhaps 20% less for reasonable mass choices

rn,(#). Similarly one finds, evaluating Zw, and the element Mww of the mass matrix from

Eqs(4.10,4.11):

M_,(#) = _rn'f(#) (4,21)

In either case, to the degree of accuracy required in these preliminary computations one has

for the weak angle at #:

M_, = 5 (4 02)
= i '-

Thisvalue for t'he weak mixing angle is that predicted by grand unified theories [13], but the

intermediate scale t_ at which the present calculation achieves it is not necessarily a point

of equality of couplings, that is, the scale t_ need not be the grand unified scale.

5. Renormalisation Group Evolution of the Mass Ratios.

The effective lagrangian so far defined for the scalar-vector boson sector at # certainly

seems to be that of the standard model. We now imagine the strong interactions to be

simply married to the electro-weak theory, and the relationships so far obtained evolved

down to, say, the scale Mw = 80.7GEV. Reasonable quantities to consider axe the mass
M 2

ratios _-w (#), and the weak mixing angle, both of which should be somewhat more free
of the ambiguities discussed above than the individual couplings gi(tt). We will choose the

scale # such that sin2(0w) evolves down to the experimental value: 0.232 [14].

']:'his choice of the intermediate scale # at which the standard model emerges is not

' well-defined, a_d the abrupt joining of the standard model to the theory above t_ resulting

M2 M_' boundary conditions for the renormalisationfrom the use of the values t_--z(tr), :-_(tt) as
group (RG) equations is probably unrealistic. However, we choose to do just this, hopefully

compensating for the vagueness by fitting tr, throtlgh the evolution of sin2(#w). To leading

9



order we have [10]:

sin2(Ow)(Mw ) =
_2(M., )

-3-[1 109c_(MW)ln # ] +
- _- . • .

-- 8 18 7r Mw
(5.1)

There results_ - 7,5x 1012GEV (/_= 3.7x 1014GEV) forsin2(Ow)(Mw) = .23o(.210)

[14,2], the former being the most recently accepted value of the weak angle. The lower

value of # is somewhat below the usually accepted grand unified scale but still very high.
M?

Using this information it is now possible to evolve the ratio M-FI_-.The relevant expressions
are:

2_, 4g 2 M_

- (5.2)
and

8/7
(X3

x, = (5.3)
C + 9c_13/v

The latter is one of a general family of. solutions for the fermion coupling RG equation

found by (KSZ) [15] but ignores electro-weak corrections at the scale tt [9]. The arbitrary

parameter C may be determined by first evolving a3 to kt and then using (5.2) and (5.3).

One needs also, the evolution equations for a2(#) and c_3(tt) which we again take at the

M2 8 obtained ignoring quark mass differences inone-loop level [9,10,14]. For the ratio _ =
_he W + wave function renormalisation (but not in the mass coefficient), we find:

Mt(Mw) = 2.04Mw = 164GEV (5.t)

:for both scales kt mentioned above, an apparently stable prediction. Allowing for reasonably
M_ 3 1

chosen unequal quarkmasses in zw and Z z yields as mentioned above _,, = g x i.-'_,
and a somewhat lower Mt = 158GEV at _ = 7.5 x 1012GEV. We have of course left out

electroweak corrections and higher loops in this very preliminaxy work.

The Higgs mass at the scale # is as in all NJL theories placed very near mH = 2m,.

Assuming a weakly coupled Higgs evolved by the usual scalar self-coupling relation:

= Mw) (5.S)
1 - 2_-'7T

one finds MH = 139(132)GEV and sin2(0w)= .232(.21). This value, however, is almost

certainly too low, since the Higgs mass is subject to strong corrections from coupling to

gr. Approximately including the coupling to gr, but not to electro--weak, by assuming xt "_

con._tant, and varying this constant from an avdrage value to its value at Mw produces

10
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MH = 132-143GEV for sin2(0w)= .232 and M_ = _M_v at #. But it is almost certainly

true that the barely bound Higgs at # will evolve to a more deeply bound composite at ._I_.,

just as pointed out by Bardeen, et. al. [2].

' 6. Conclusions.

' It seems possible to recover the standard electro-weak theory from a four-fermion theory at

a scale A ,,- 1013-1015GEV, perhaps somewhat below the usual grand unification scale. The

quark-meson sector, incidentally, is consistently defined by setting GwW = gw/21/_ _, that

is gw = Gw/(2_), etc.. No deeper basis is given for the four-fermion theory, nor for the

asymmetric coupling of quarks to the mass-generating scalar field. One might imagine that

the theory arises from massive vector bosons at this upper scale, with the observed W, and

Z arising as very light composite images of their higher mass analogues. A more natural

reason for the gauge symmetry at the present experimental mass scale would then emerge.

The treatment we present here follows in many ways that outlined in [2], but of course,

we have added a specific SU(2) x U(1) current-current interaction to the four-fermion

theory. In both presentations the four-fermion theory is expected to be valid at some scale:

we have introduced an intermediate scale #, A >> _ >> Mw, at which the four-fermion

action apparently yields the standard SU(2) x U(1) theory with very simple expressions for

( A')-'the lagrangian parameters. At this scale, the coupling -,, In ,--'r is not very small, but

still hopefully perturbative. It is surely, then, somewhat crude to turn on the full Standard

model at # and evolve downward. Just as with Bardeen ct. al., the N JL wave flmction

In (_) vanishes at _ _ A, where indeed they initiate the matching.
renormalisation Z(#)

Introducing extra generations with still one high mass (up) quark dominating would

leave sin2(Ow), and _ unchanged at #, but would weaken the couplings at the scale #as
well as altering the evolutions upwards to #. Moreover the altered mass prediction would

then be for this new up quark, and presumably the top would be lower.

Finally, it should be pointed out that with all the four-fermion couplings inversely pro-.

portional to the cutoff, it should be possible to investigate multi-fermion loop contributions

and check the perturbative nature of the four-fermion interaction.
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