13 research outputs found

    A high precision audio-frequency phase and ratio nullmeter

    No full text

    From plankton to top predators: bottom-up control of a marine food web across four trophic levels

    No full text
    Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predator

    Altered distribution of intraglomerular immune complexes in C3-deficient mice

    No full text
    We have studied the role of complement in a model of glomerular inflammation induced by the in situ formation of immune complexes along the glomerular basement membrane. In C3-deficient mice, produced by homologous recombination, immune complex formation occurs initially in the subendothelial site and progresses slowly to the subepithelial position, whereas wild-type mice do not develop subendothelial deposits. In addition, the accumulation of electron-dense deposits is greater in the complement-deficient mice. Complement therefore influences glomerular handling of immune complexes, possibly because of changes in the physiochemical characteristics of the immune complexes. However, despite evidence of complement activation in the wild-type mice, as demonstrated by immunohistochemical detection of C3, C4 and C9, the degree of proteinuria was similar in C3-deficient mice. We conclude that, although complement is required for the normal glomerular metabolism of immune complexes, other, complement-independent, factors are involved in the generation of glomerular injury in this model
    corecore