744 research outputs found
In Things We Trust? Towards trustability in the Internet of Things
This essay discusses the main privacy, security and trustability issues with
the Internet of Things
Raman spectra of olivine measured in different planetary environments
Missions to bodies of our solar system are coming up and imply new instrumentation to be applied remotely and in situ. In ESA’s ExoMars mission the Raman Laser Spectrometer (RLS) will identify minerals and organic compounds in Martian surface rocks and soils. Here we present the results of a Raman study of different olivines with variable Fo and Fa contents. We chose olivine because it is a rock forming mineral and is found as an abundant mineral in Martian meteorites. We determined the
Raman spectra in different environmental conditions that include vacuum, 8 mbar CO2 atmosphere and temperatures between room temperature and 10 K.
These environmental conditions resemble those on asteroids as well as on Mars and Moon. Thus our study investigates the influence of these varying conditions on the position and band width of the Raman lines, which is to be known when such investigations are performed in future space missions
Optical frequency measurement of the 1S-3S two-photon transition in hydrogen
This article reports the first optical frequency measurement of the
transition in hydrogen. The excitation of this
transition occurs at a wavelength of 205 nm which is obtained with two
frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency
is measured with an optical frequency comb. The second-order Doppler effect is
evaluated from the observation of the motional Stark effect due to a transverse
magnetic field perpendicular to the atomic beam. The measured value of the
frequency splitting is with a relative uncertainty of
. After the measurement of the
frequency, this result is the most precise of the optical frequencies in
hydrogen
Apparent giant dielectric constants, dielectric relaxation, and ac-conductivity of hexagonal perovskites La1.2Sr2.7BO7.33 (B = Ru, Ir)
We present a thorough dielectric investigation of the hexagonal perovskites
La1.2Sr2.7IrO7.33 and La1.2Sr2.7RuO7.33 in a broad frequency and temperature
range, supplemented by additional infrared measurements. The occurrence of
giant dielectric constants up to 10^5 is revealed to be due to electrode
polarization. Aside of dc and ac conductivity contributions, we detect two
intrinsic relaxation processes that can be ascribed to ionic hopping between
different off-center positions. In both materials we find evidence for charge
transport via hopping of localized charge carriers. In the infrared region,
three phonon bands are detected, followed by several electronic excitations. In
addition, these materials provide further examples for the occurrence of a
superlinear power law in the broadband ac conductivity, which recently was
proposed to be a universal feature of all disordered matter.Comment: 8 pages, 7 figure
Improved full one-loop corrections to A^0 -> \sf_1 \sf_2 and \sf_2 -> \sf_1 A^0
We calculate the full electroweak one-loop corrections to the decay of the
CP-odd Higgs boson A^0 into scalar fermions in the minimal supersymmetric
extension of the Standard Model. For this purpose many parameters of the MSSM
have to be properly renormalized in the on-shell renormalization scheme. We
have also included the SUSY-QCD corrections. For the decay into bottom squarks
and tau sleptons, especially for large \tan\b, the corrections can be very
large making the perturbation expansion unreliable. We solve this problem by an
appropriate definition of the tree-level coupling in terms of running fermion
masses and running trilinear couplings A_f. We also discuss the decay of heavy
scalar fermions into light scalar fermions and A^0. We find that the
corrections can be sizeable and therefore cannot be neglected.Comment: 42 pages, 20 figures (23 eps-files
Current-induced highly dissipative domains in high Tc thin films
We have investigated the resistive response of high Tc thin films submitted
to a high density of current. For this purpose, current pulses were applied
into bridges made of Nd(1.15)Ba(1.85)Cu3O7 and Bi2Sr2CaCu2O8. By recording the
time dependent voltage, we observe that at a certain critical current j*, a
highly dissipative domain develops somewhere along the bridge. The successive
formation of these domains produces stepped I-V characteristics. We present
evidences that these domains are not regions with a temperature above Tc, as
for hot spots. In fact this phenomenon appears to be analog to the nucleation
of phase-slip centers observed in conventional superconductors near Tc, but
here in contrast they appear in a wide temperature range. Under some
conditions, these domains will propagate and destroy the superconductivity
within the whole sample. We have measured the temperature dependence of j* and
found a similar behavior in the two investigated compounds. This temperature
dependence is just the one expected for the depairing current, but the
amplitude is about 100 times smaller.Comment: 9 pages, 9 figures, Revtex, to appear in Phys. Rev.
Shifted Excitation Raman Difference Spectroscopy Applied to Extraterrestrial Particles Returned from the Asteroid Itokawa
Two extraterrestrial particles from the asteroid Itokawa are investigated applying Shifted Excitation Raman Difference Spectroscopy (SERDS). These particles were returned by the Hayabusa mission of the Japanese Space Agency JAXA. For SERDS a diode laser based microsystem light source at 488 nm is used for excitation. It has been found that fluorescence signals masking the Raman spectral features of interest can be substantially separated by applying SERDS. Therefore, SERDS improves the information obtained from the Raman spectra and enables a reliable analysis for investigations on extraterrestrial samples
- …