380 research outputs found
Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime
In this paper we consider the effects on big bang nucleosynthesis (BBN) of
the hadronic decay of a long-lived massive particle. If high-energy hadrons are
emitted near the BBN epoch ( -- ), they
extraordinarily inter-convert the background nucleons each other even after the
freeze-out time of the neutron to proton ratio. Then, produced light element
abundances are changed, and that may result in a significant discrepancy
between standard BBN and observations. Especially on the theoretical side, now
we can obtain a lot of experimental data of hadrons and simulate the hadronic
decay process executing the numerical code of the hadron fragmentation even in
the high energy region where we have no experimental data. Using the light
element abundances computed in the hadron-injection scenario, we derive a
constraint on properties of such a particle by comparing our theoretical
results with observations.Comment: 33 pages, 14 postscript figures, reference added, typo corrected, to
appear in Phys. Rev.
Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution
Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia
Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion
We present a study of inhomogeneous big bang nucleosynthesis with emphasis on
transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction
network and compute the light element abundances for a range of inhomogeneity
parameters. We find that shortly after annihilation of electron-positron pairs,
Thomson scattering on background photons prevents the diffusion of the
remaining electrons. Protons and multiply charged ions then tend to diffuse
into opposite directions so that no net charge is carried. Ions with Z>1 get
enriched in the overdense regions, while protons diffuse out into regions of
lower density. This leads to a second burst of nucleosynthesis in the overdense
regions at T<20 keV, leading to enhanched destruction of deuterium and lithium.
We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where
constraints
7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio
BBN and the Primordial Abundances
The relic abundances of the light elements synthesized during the first few
minutes of the evolution of the Universe provide unique probes of cosmology and
the building blocks for stellar and galactic chemical evolution, while also
enabling constraints on the baryon (nucleon) density and on models of particle
physics beyond the standard model. Recent WMAP analyses of the CBR temperature
fluctuation spectrum, combined with other, relevant, observational data, has
yielded very tight constraints on the baryon density, permitting a detailed,
quantitative confrontation of the predictions of Big Bang Nucleosynthesis with
the post-BBN abundances inferred from observational data. The current status of
this comparison is presented, with an emphasis on the challenges to astronomy,
astrophysics, particle physics, and cosmology it identifies.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical
Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L.
Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"
Solar Neutrino Constraints on the BBN Production of Li
Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10}
\eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN)
calculations can make relatively accurate predictions of the abundances of the
light element isotopes which can be tested against observational abundance
determinations. At this value of \eta, the Li7 abundance is predicted to be
significantly higher than that observed in low metallicity halo dwarf stars.
Among the possible resolutions to this discrepancy are 1) Li7 depletion in the
atmosphere of stars; 2) systematic errors originating from the choice of
stellar parameters - most notably the surface temperature; and 3) systematic
errors in the nuclear cross sections used in the nucleosynthesis calculations.
Here, we explore the last possibility, and focus on possible systematic errors
in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7
production channel in BBN. The absolute value of the cross section for this key
reaction is known relatively poorly both experimentally and theoretically. The
agreement between the standard solar model and solar neutrino data thus
provides additional constraints on variations in the cross section (S_{34}).
Using the standard solar model of Bahcall, and recent solar neutrino data, we
can exclude systematic S_{34} variations of the magnitude needed to resolve the
BBN Li7 problem at > 95% CL. Additional laboratory data on
He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar
neutrinos, particularly if care is taken in determining the absolute cross
section and its uncertainties. Nevertheless, it already seems that this
``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions
are briefly discussed.Comment: 21 pages, 3 ps figure
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
SuperWIMP Dark Matter Signals from the Early Universe
Cold dark matter may be made of superweakly-interacting massive particles,
superWIMPs, that naturally inherit the desired relic density from late decays
of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in
supergravity and Kaluza-Klein gravitons from extra dimensions. These particles
are impossible to detect in all dark matter experiments. We find, however, that
superWIMP dark matter may be discovered through cosmological signatures from
the early universe. In particular, superWIMP dark matter has observable
consequences for Big Bang nucleosynthesis and the cosmic microwave background
(CMB), and may explain the observed underabundance of 7Li without upsetting the
concordance between deuterium and CMB baryometers. We discuss implications for
future probes of CMB black body distortions and collider searches for new
particles. In the course of this study, we also present a model-independent
analysis of entropy production from late-decaying particles in light of WMAP
data.Comment: 19 pages, 5 figures, typos correcte
Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate
We calculate primordial abundances of light elements produced during big bang
nucleosynthesis when the fine structure constant and/or the cosmic expansion
rate take non-standard values. We compare them with the recent values of
observed D, He4 and Li7 abundances, which show slight inconsistency among
themselves in the standard big bang nucleosynthesis scenario. This
inconsistency is not solved by considering either a varying fine structure
constant or a non-standard expansion rate separately but solutions are found by
their simultaneous existence.Comment: 5 pages, 5 figure
Cosmic Rays during BBN as Origin of Lithium Problem
There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN)
epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be
the origin of Lithium problem or not. It can be expected that BBNCRs flux will
be small in order to keep the success of standard BBN (SBBN). With favorable
assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical
calculation showed that extra contributions from BBNCRs can account for the
Li abundance successfully. However Li abundance is only lifted an order
of magnitude, which is still much lower than the observed value. As the
deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the
allowed parameter space for the spectrum is strictly constrained. We should
emphasize that the acceleration mechanism for BBNCRs in the early universe is
still an open question. For example, strong turbulent magnetic field is
probably the solution to the problem. Whether such a mechanism can provide the
required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio
Higher spin quaternion waves in the Klein-Gordon theory
Electromagnetic interactions are discussed in the context of the Klein-Gordon
fermion equation. The Mott scattering amplitude is derived in leading order
perturbation theory and the result of the Dirac theory is reproduced except for
an overall factor of sixteen. The discrepancy is not resolved as the study
points into another direction. The vertex structures involved in the scattering
calculations indicate the relevance of a modified Klein-Gordon equation, which
takes into account the number of polarization states of the considered quantum
field. In this equation the d'Alembertian is acting on quaternion-like plane
waves, which can be generalized to representations of arbitrary spin. The
method provides the same relation between mass and spin that has been found
previously by Majorana, Gelfand, and Yaglom in infinite spin theories
- …
