782 research outputs found

    Direct spectral measurements of a quasi-cw free-electron laser oscillator

    Get PDF

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure

    Cosmic Rays during BBN as Origin of Lithium Problem

    Full text link
    There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN) epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be the origin of Lithium problem or not. It can be expected that BBNCRs flux will be small in order to keep the success of standard BBN (SBBN). With favorable assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical calculation showed that extra contributions from BBNCRs can account for the 7^7Li abundance successfully. However 6^6Li abundance is only lifted an order of magnitude, which is still much lower than the observed value. As the deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the allowed parameter space for the spectrum is strictly constrained. We should emphasize that the acceleration mechanism for BBNCRs in the early universe is still an open question. For example, strong turbulent magnetic field is probably the solution to the problem. Whether such a mechanism can provide the required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio

    Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate

    Full text link
    We calculate primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take non-standard values. We compare them with the recent values of observed D, He4 and Li7 abundances, which show slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a non-standard expansion rate separately but solutions are found by their simultaneous existence.Comment: 5 pages, 5 figure

    Coherence Resonance and Noise-Induced Synchronization in Globally Coupled Hodgkin-Huxley Neurons

    Get PDF
    The coherence resonance (CR) of globally coupled Hodgkin-Huxley neurons is studied. When the neurons are set in the subthreshold regime near the firing threshold, the additive noise induces limit cycles. The coherence of the system is optimized by the noise. A bell-shaped curve is found for the peak height of power spectra of the spike train, being significantly different from a monotonic behavior for the single neuron. The coupling of the network can enhance CR in two different ways. In particular, when the coupling is strong enough, the synchronization of the system is induced and optimized by the noise. This synchronization leads to a high and wide plateau in the local measure of coherence curve. The local-noise-induced limit cycle can evolve to a refined spatiotemporal order through the dynamical optimization among the autonomous oscillation of an individual neuron, the coupling of the network, and the local noise.Comment: five pages, five figure

    Use of the Generalized Gradient Approximation in Pseudopotential Calculations of Solids

    Full text link
    We present a study of the equilibrium properties of spsp-bonded solids within the pseudopotential approach, employing recently proposed generalized gradient approximation (GGA) exchange correlation functionals. We analyze the effects of the gradient corrections on the behavior of the pseudopotentials and discuss possible approaches for constructing pseudopotentials self-consistently in the context of gradient corrected functionals. The calculated equilibrium properties of solids using the GGA functionals are compared to the ones obtained through the local density approximation (LDA) and to experimental data. A significant improvement over the LDA results is achieved with the use of the GGA functionals for cohesive energies. For the lattice constant, the same accuracy as in LDA can be obtained when the nonlinear coupling between core and valence electrons introduced by the exchange correlation functionals is properly taken into account. However, GGA functionals give bulk moduli that are too small compared to experiment.Comment: 15 pages, latex, no figure

    Carleson Measures and Toeplitz Operators

    Get PDF
    In this last chapter we shall describe an application of the Kobayashi distance to geometric function theory and functional analysis of holomorphic functions

    Mapping of periodically poled crystals via spontaneous parametric down-conversion

    Full text link
    A new method for characterization of periodically poled crystals is developed based on spontaneous parametric down-conversion. The method is demonstrated on crystals of Y:LiNbO3, Mg:Y:LiNbO3 with non-uniform periodically poled structures, obtained directly under Czochralski growth procedure and designed for application of OPO in the mid infrared range. Infrared dispersion of refractive index, effective working periods and wavelengths of OPO were determined by special treatment of frequency-angular spectra of spontaneous parametric down-conversion in the visible range. Two-dimensional mapping via spontaneous parametric down-conversion is proposed for characterizing spatial distribution of bulk quasi-phase matching efficiency across the input window of a periodically poled sample.Comment: 19 pages, 6 figure

    SuperWIMP Dark Matter Signals from the Early Universe

    Full text link
    Cold dark matter may be made of superweakly-interacting massive particles, superWIMPs, that naturally inherit the desired relic density from late decays of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that superWIMP dark matter may be discovered through cosmological signatures from the early universe. In particular, superWIMP dark matter has observable consequences for Big Bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7Li without upsetting the concordance between deuterium and CMB baryometers. We discuss implications for future probes of CMB black body distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of WMAP data.Comment: 19 pages, 5 figures, typos correcte

    Simulation of heat transport in low-dimensional oscillator lattices

    Full text link
    The study of heat transport in low-dimensional oscillator lattices presents a formidable challenge. Theoretical efforts have been made trying to reveal the underlying mechanism of diversified heat transport behaviors. In lack of a unified rigorous treatment, approximate theories often may embody controversial predictions. It is therefore of ultimate importance that one can rely on numerical simulations in the investigation of heat transfer processes in low-dimensional lattices. The simulation of heat transport using the non-equilibrium heat bath method and the Green-Kubo method will be introduced. It is found that one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) momentum-conserving nonlinear lattices display power-law divergent, logarithmic divergent and constant thermal conductivities, respectively. Next, a novel diffusion method is also introduced. The heat diffusion theory connects the energy diffusion and heat conduction in a straightforward manner. This enables one to use the diffusion method to investigate the objective of heat transport. In addition, it contains fundamental information about the heat transport process which cannot readily be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New York (2016
    corecore