44 research outputs found
Curved Tails in Polymerization-Based Bacterial Motility
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a
visually striking signature of actin polymerization-based motility. Similar
actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae,
the Vaccinia virus, and vesicles and microspheres in related in vitro systems.
We show that the torque required to produce the curvature in the tail can arise
from randomly placed actin filaments pushing the bacterium or particle. We find
that the curvature magnitude determines the number of actively pushing
filaments, independent of viscosity and of the molecular details of force
generation. The variation of the curvature with time can be used to infer the
dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2
Ultrastructural changes in field CA1 of the kainic acid-lesioned hippocampus of the rat
SIGLEAvailable from British Library Document Supply Centre- DSC:DX173379 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Utrophin Binds Laterally along Actin Filaments and Can Couple Costameric Actin with Sarcolemma When Overexpressed in Dystrophin-deficient Muscle
Dystrophin is widely thought to mechanically link the cortical cytoskeleton with the muscle sarcolemma. Although the dystrophin homolog utrophin can functionally compensate for dystrophin in mice, recent studies question whether utrophin can bind laterally along actin filaments and anchor filaments to the sarcolemma. Herein, we have expressed full-length recombinant utrophin and show that the purified protein is fully soluble with a native molecular weight and molecular dimensions indicative of monomers. We demonstrate that like dystrophin, utrophin can form an extensive lateral association with actin filaments and protect actin filaments from depolymerization in vitro. However, utrophin binds laterally along actin filaments through contribution of acidic spectrin-like repeats rather than the cluster of basic repeats used by dystrophin. We also show that the defective linkage between costameric actin filaments and the sarcolemma in dystrophin-deficient mdx muscle is rescued by overexpression of utrophin. Our results demonstrate that utrophin and dystrophin are functionally interchangeable actin binding proteins, but that the molecular epitopes important for filament binding differ between the two proteins. More generally, our results raise the possibility that spectrin-like repeats may enable some members of the plakin family of cytolinkers to laterally bind and stabilize actin filaments