41 research outputs found

    Досвід створення та функціонування Державної системи правової інформації Республіки Білорусь

    Get PDF
    Щодо досвіду створення та особливостей функціонування білоруської моделі державної системи правової інформації.Относительно опыта создания и особенностей функционирования белорусской модели государственной системы правовой информации.In relation to the experience of foundation and Рeculiarities of the Belorussia model state system of the legal information functioning

    Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis

    Get PDF
    Remyelination requires innate immune system function, but how exactly microglia and macrophages clear myelin debris after injury and tailor a specific regenerative response is unclear. Here, we asked whether pro-inflammatory microglial/macrophage activation is required for this process. We established a novel toxin-based spinal cord model of de- and remyelination in zebrafish and showed that pro-inflammatory NF-κB-dependent activation in phagocytes occurs rapidly after myelin injury. We found that the pro-inflammatory response depends on myeloid differentiation primary response 88 (MyD88). MyD88-deficient mice and zebrafish were not only impaired in the degradation of myelin debris, but also in initiating the generation of new oligodendrocytes for myelin repair. We identified reduced generation of TNF-α in lesions of MyD88-deficient animals, a pro-inflammatory molecule that was able to induce the generation of new premyelinating oligodendrocytes. Our study shows that pro-inflammatory phagocytic signaling is required for myelin debris degradation, for inflammation resolution, and for initiating the generation of new oligodendrocytes

    The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein.

    No full text
    Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). At present, little is known about the cellular mechanisms that control APP shedding and Abeta generation. Here, we identified a novel protein, transmembrane protein 59 (TMEM59), as a new modulator of APP shedding. TMEM59 was found to be a ubiquitously expressed, Golgi-localized protein. TMEM59 transfection inhibited complex N- and O-glycosylation of APP in cultured cells. Additionally, TMEM59 induced APP retention in the Golgi and inhibited Abeta generation as well as APP cleavage by alpha- and beta-secretase cleavage, which occur at the plasma membrane and in the endosomes, respectively. Moreover, TMEM59 inhibited the complex N-glycosylation of the prion protein, suggesting a more general modulation of Golgi glycosylation reactions. Importantly, TMEM59 did not affect the secretion of soluble proteins or the alpha-secretase like shedding of tumor necrosis factor alpha, demonstrating that TMEM59 did not disturb the general Golgi function. The phenotype of TMEM59 transfection on APP glycosylation and shedding was similar to the one observed in cells lacking conserved oligomeric Golgi (COG) proteins COG1 and COG2. Both proteins are required for normal localization and activity of Golgi glycosylation enzymes. In summary, this study shows that TMEM59 expression modulates complex N- and O-glycosylation and suggests that TMEM59 affects APP shedding by reducing access of APP to the cellular compartments, where it is normally cleaved by alpha- and beta-secretase

    QARIP: A web server for quantitative proteomic analysis of regulated intramembrane proteolysis.

    Get PDF
    Regulated intramembrane proteolysis (RIP) is a critical mechanism for intercellular communication and regulates the function of membrane proteins through sequential proteolysis. RIP typically starts with ectodomain shedding of membrane proteins by extracellular membrane-bound proteases followed by intramembrane proteolysis of the resulting membrane-tethered fragment. However, for the majority of RIP proteases the corresponding substrates and thus, their functions, remain unknown. Proteome-wide identification of RIP protease substrates is possible by mass spectrometry-based quantitative comparison of RIP substrates or their cleavage products between different biological states. However, this requires quantification of peptides from only the ectodomain or cytoplasmic domain. Current analysis software does not allow matching peptides to either domain. Here we present the QARIP (Quantitative Analysis of Regulated Intramembrane Proteolysis) web server which matches identified peptides to the protein transmembrane topology. QARIP allows determination of quantitative ratios separately for the topological domains (cytoplasmic, ectodomain) of a given protein and is thus a powerful tool for quality control, improvement of quantitative ratios and identification of novel substrates in proteomic RIP datasets. To our knowledge, the QARIP web server is the first tool directly addressing the phenomenon of RIP. The web server is available at http://webclu.bio.wzw.tum.de/qarip/. This website is free and open to all users and there is no login requirement

    Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons.

    No full text
    Cell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins. Here, we demonstrate that endoglycan is broadly expressed in the developing mouse brains and is proteolytically shed in vitro in mouse neurons and in vivo in mouse brains. Endoglycan shedding in primary neurons was mediated by the transmembrane protease a disintegrin and metalloprotease 10 (ADAM10), but not by its homolog ADAM17. Functionally, endoglycan deficiency reduced the branching of neurites extending from primary neurons in vitro, whereas deletion of ADAM10 had the opposite effect and increased neurite branching. Taken together, our study discovers a function for endoglycan in neurite branching, establishes endoglycan as an ADAM10 substrate and suggests that ADAM10 cleavage of endoglycan may contribute to neurite branching

    Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10.

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are post-transcriptional regulators involved in numerous biological processes including the pathogenesis of Alzheimer's disease (AD). A key gene of AD, ADAM10, controls the proteolytic processing of APP and the formation of the amyloid plaques and is known to be regulated by miRNA in hepatic cancer cell lines. To predict miRNAs regulating ADAM10 expression concerning AD, we developed a computational approach. METHODS: MiRNA binding sites in the human ADAM10 3' untranslated region were predicted using the RNA22, RNAhybrid and miRanda programs and ranked by specific selection criteria with respect to AD such as differential regulation in AD patients and tissue-specific expression. Furthermore, target genes of miR-103, miR-107 and miR-1306 were derived from six publicly available miRNA target site prediction databases. Only target genes predicted in at least four out of six databases in the case of miR-103 and miR-107 were compared to genes listed in the AlzGene database including genes possibly involved in AD. In addition, the target genes were used for Gene Ontology analysis and literature mining. Finally, we used a luciferase assay to verify the potential effect of these three miRNAs on ADAM10 3' UTR in SH-SY5Y cells. RESULTS: Eleven miRNAs were selected, which have evolutionary conserved binding sites. Three of them (miR-103, miR-107, miR-1306) were further analysed as they are linked to AD and most strictly conserved between different species. Predicted target genes of miR-103 (p-value = 0.0065) and miR-107 (p-value = 0.0009) showed significant overlap with the AlzGene database except for miR-1306. Interactions between miR-103 and miR-107 to genes were revealed playing a role in processes leading to AD. ADAM10 expression in the reporter assay was reduced by miR-1306 (28%), miR-103 (45%) and miR-107 (52%). CONCLUSIONS: Our approach shows the requirement of incorporating specific, disease-associated selection criteria into the prediction process to reduce the amount of false positive predictions. In summary, our method identified three miRNAs strongly suggested to be involved in AD, which possibly regulate ADAM10 expression and hence offer possibilities for the development of therapeutic treatments of AD

    A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein.

    No full text
    Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). beta-Secretase catalyzes the first step in Abeta generation, whereas alpha-secretase cleaves within the Abeta domain, prevents Abeta generation, and generates a secreted form of APP with neuroprotective properties. At present, little is known about the cellular mechanisms that control APP alpha-secretase cleavage and Abeta generation. To explore the contributory pathways, we carried out an expression cloning screen. We identified a novel member of the sorting nexin (SNX) family of endosomal trafficking proteins, called SNX33, as a new activator of APP alpha-secretase cleavage. SNX33 is a homolog of SNX9 and was found to be a ubiquitously expressed phosphoprotein. Exogenous expression of SNX33 in cultured cells increased APP alpha-secretase cleavage 4-fold but surprisingly had little effect on beta-secretase cleavage. This effect was similar to the expression of the dominant negative dynamin-1 mutant K44A. SNX33 bound the endocytic GTPase dynamin and reduced the rate of APP endocytosis in a dynamin-dependent manner. This led to an increase of APP at the plasma membrane, where alpha-secretase cleavage mostly occurs. In summary, our study identifies SNX33 as a new endocytic protein, which modulates APP endocytosis and APP alpha-secretase cleavage, and demonstrates that the rate of APP endocytosis is a major control factor for APP alpha-secretase cleavage

    Non-cell-autonomous function of DR6 in Schwann cell proliferation.

    No full text
    Death receptor 6 (DR6) is an orphan member of the TNF receptor superfamily and controls cell death and differentiation in a cell-autonomous manner in different cell types. Here, we report an additional non-cell-autonomous function for DR6 in the peripheral nervous system (PNS). DR6-knockout (DR6 KO) mice showed precocious myelination in the PNS. Using an invitro myelination assay, we demonstrate that neuronal DR6 acts in trans on Schwann cells (SCs) and reduces SC proliferation and myelination independently of its cytoplasmic death domain. Mechanistically, DR6 was found to be cleaved in neurons by a disintegrin and metalloprotease 10 (ADAM10), releasing the soluble DR6 ectodomain (sDR6). Notably, in the invitro myelination assay, sDR6 was sufficient to rescue the DR6 KO phenotype. Thus, in addition to the cell-autonomous receptor function of full-length DR6, the proteolytically released sDR6 can unexpectedly also act as a paracrine signaling factor in the PNS in a non-cell-autonomous manner during SC proliferation and myelination. This new mode of DR6 signaling will be relevant in future attempts to target DR6 in disease settings

    ADAM17 stabilizes its interacting partner inactive Rhomboid 2 (iRhom2) but not inactive Rhomboid 1 (iRhom1).

    No full text
    The metalloprotease ADAM17 (a disintegrin and metalloprotease 17) is a key regulator of tumor necrosis factor ? (TNF?), interleukin 6 receptor (IL-6R), and epidermal growth factor receptor (EGFR) signaling. ADAM17 maturation and function depend on the seven-membrane?spanning inactive rhomboid-like proteins 1 and 2 (iRhom1/2 or Rhbdf1/2). Most studies to date have focused on overexpressed iRhom1 and -2, so only little is known about the properties of the endogenous proteins. Here, we show that endogenous iRhom1 and -2 can be cell surface?biotinylated on mouse embryonic fibroblasts (mEFs), revealing that endogenous iRhom1 and -2 proteins are present on the cell surface and that iRhom2 also is present on the surface of lipopolysaccharide-stimulated primary bone marrow?derived macrophages. Interestingly, very little, if any, iRhom2 was detectable in mEFs or bone marrow?derived macrophages lacking ADAM17, suggesting that iRhom2 is stabilized by ADAM17. By contrast, the levels of iRhom1 were slightly increased in the absence of ADAM17 in mEFs, indicating that its stability does not depend on ADAM17. These findings support a model in which iRhom2 and ADAM17 are obligate binding partners and indicate that iRhom2 stability requires the presence of ADAM17, whereas iRhom1 is stable in the absence of ADAM17
    corecore