5 research outputs found

    Electromagnetic properties of graphene junctions

    Full text link
    A resonant chiral tunneling (CT) across a graphene junction (GJ) induced by an external electromagnetic field (EF) is studied. Modulation of the electron and hole wavefunction phases φ\varphi by the external EF during the CT processes strongly impacts the CT directional diagram. Therefore the a.c. transport characteristics of GJs depend on the EF polarization and frequency considerably. The GJ shows great promises for various nanoelectronic applications working in the THz diapason.Comment: 4 pages 3 figure

    Heat to Electricity Conversion by a Graphene Stripe with Heavy Chiral Fermions

    Full text link
    A conversion of thermal energy into electricity is considered in the electrically polarized graphene stripes with zigzag edges where the heavy chiral fermion (HCF) states are formed. The stripes are characterized by a high electric conductance Ge and by a significant Seebeck coefficient S. The electric current in the stripes is induced due to a non-equilibrium thermal injection of "hot" electrons. This thermoelectric generation process might be utilized for building of thermoelectric generators with an exceptionally high figure of merit Z{\delta}T \simeq 100 >> 1 and with an appreciable electric power densities \sim 1 MW/cm2.Comment: 8 pages, 3 figure

    Current–voltage characteristics of Nb–carbon–Nb junctions

    No full text
    We report on properties of Nb(/Ti)–carbon–(Ti/)Nb junctions fabricated on graphite flakes using e-beam lithography. The devices were characterized at temperatures above 1.8 K where a Josephson current was not observed, but the differential conductivity revealed features below the critical temperature of Nb, and overall metallic conductivity, in spite of a high-junctions resistance. Since the conductivity of graphite along the planes is essentially two-dimensional (2D), we use a theoretical model developed for metal/graphene junctions for interpretation of the results. The model involves two very different graphene “access” lengths. The shorter length characterizes ordinary tunneling between the three-dimensional Nb(/Ti) electrode and 2D graphene, while the second, much longer length, is associated with the Andreev reflections (AR) inside the junction and involves also “reflectionless” AR processes. The relevant transmission factors are small in the first case and much larger in the second, which explains the apparent contradiction of the observed behavior

    In-plane fluxon in layered superconductors with arbitrary number of layers

    Full text link
    I derive an approximate analytic solution for the in-plane vortex (fluxon) in layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary number of layers. The validity of the solution is verified by numerical simulation. It is shown that in SJJ's with large number of thin layers, phase/current and magnetic field of the fluxon are decoupled from each other. The variation of phase/current is confined within the Josephson penetration depth, λJ\lambda_J, along the layers, while magnetic field decays at the effective London penetration depth, λcλJ\lambda_c \gg \lambda_J. For comparison with real high-TcT_c superconducting samples, large scale numerical simulations with up to 600 SJJ's and with in-plane length up to 4000 λJ\lambda_J%, are presented. It is shown, that the most striking feature of the fluxon is a Josephson core, manifesting itself as a sharp peak in magnetic induction at the fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference on Vortex Matter in Superconductors (Crete, September 1999

    Coulomb staircases and quantum size effects in tunnelling spectroscopy on ligand-stabilized metal clusters

    Get PDF
    Contains fulltext : 29391___.PDF (publisher's version ) (Open Access
    corecore