21 research outputs found

    New calculations of the PNC Matrix Element for the JπTJ^{\pi}T 0+1,0−1^{+}1,0^{-}1 doublet in 14^{14}N

    Full text link
    A new calculation of the predominantly isoscalar PNC matrix element between the JπTJ^{\pi}T 0+1,0−10^{+}1,0^{-}1 (Ex≈_{x} \approx 8.7 MeV) states in 14^{14}N has been carried out in a (0+1+2+3+4)ℏω\hbar \omega model space with the Warburton-Brown interaction. The magnitude of the PNC matrix element of 0.22 to 0.34 eV obtained with the DDH PNC interaction is substantially suppressed compared with previous calculations in smaller model spaces but shows agreement with the preliminary Seattle experimental data. The calculated sign is opposite to that obtained experimentally, and the implications of this are discussed.Comment: REVTEX, 28 page

    Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption

    No full text
    The functions of some CLC Cl(-) channels are evident from human diseases that result from their mutations, but the role of the broadly expressed ClC-2 Cl(-) channel is less clear. Several important functions have been attributed to ClC-2, but contrary to these expectations ClC-2-deficient mice lacked overt abnormalities except for a severe degeneration of the retina and the testes, which led to selective male infertility. Seminiferous tubules did not develop lumina and germ cells failed to complete meiosis. Beginning around puberty there was a massive death of primary spermatocytes and later also of spermatogonia. Tubules were filled with abnormal Sertoli cells, which normally express ClC-2 in patches adjacent to germ cells. In the retina, photoreceptors lacked normal outer segments and degenerated between days P10 and P30. The current across the retinal pigment epithelium was severely reduced at P36. Thus, ClC-2 disruption entails the death of two cell types which depend on supporting cells that form the blood-testes and blood-retina barriers. We propose that ClC-2 is crucial for controlling the ionic environment of these cells
    corecore