60 research outputs found

    An experimental test of limits to tree establishment in arctic tundra

    No full text

    Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change

    No full text
    Long-term ecosystem-level experiments, in which the environment is manipulated in a controlled manner, are important tools to predict the responses of ecosystem functioning and composition to future global change. We present the results of a meta-analysis performed on the results of long-term ecosystem-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses of different arctic and subarctic ecosystems to experimental fertilization, warming and shading. We not only analysed the general patterns but also the differences in responsiveness between sites and regions. Aboveground plant biomass showed a broad similarity of responses in both locations, and also showed some important differences. In both locations, aboveground plant biomass, particularly the biomass of deciduous and graminoid plants, responded most strongly to nutrient addition. The biomass of mosses and lichens decreased in both locations as the biomass of vascular plants increased. An important difference between the two regions was the smaller positive aboveground biomass response of deciduous shrubs in Abisko as compared with Toolik Lake. Whereas in Toolik Lake Betula nana increased its dominance and replaced many of the other plant types, in Abisko all vascular plant types increased in abundance without major shifts in relative abundance. The differences between the responses of the dominant vegetation types of the Toolik Lake region, i.e. tussock tundra systems, and that of the Abisko region, i.e. heath systems, may have important implications for ecosystem development under expected patterns of global change. However, there were also large site-specific differences within each region. Several potential mechanistic explanations for the differences between sites and regions are discussed. The response patterns show the need for analyses of joint data sets from many regions and sites, in order to uncover common responses to changes in climate across large arctic regions from regional or local responses

    Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of15N tracer field studies

    Get PDF
    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (<1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C : N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha−1·yr−1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer additio

    Long-term ecosystem level experiment at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalisations and differences in ecosystem and plant type responses to global change.

    No full text
    Long-term ecosystem-level experiments, in which the environment is manipulated in a controlled manner, are important tools to predict the responses of ecosystem functioning and composition to future global change. We present the results of a meta-analysis performed on the results of long-term ecosystem-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses of different arctic and subarctic ecosystems to experimental fertilization, warming and shading. We not only analysed the general patterns but also the differences in responsiveness between sites and regions. Aboveground plant biomass showed a broad similarity of responses in both locations, and also showed some important differences. In both locations, aboveground plant biomass, particularly the biomass of deciduous and graminoid plants, responded most strongly to nutrient addition. The biomass of mosses and lichens decreased in both locations as the biomass of vascular plants increased. An important difference between the two regions was the smaller positive aboveground biomass response of deciduous shrubs in Abisko as compared with Toolik Lake. Whereas in Toolik Lake Betula nana increased its dominance and replaced many of the other plant types, in Abisko all vascular plant types increased in abundance without major shifts in relative abundance. The differences between the responses of the dominant vegetation types of the Toolik Lake region, i.e. tussock tundra systems, and that of the Abisko region, i.e. heath systems, may have important implications for ecosystem development under expected patterns of global change. However, there were also large site-specific differences within each region. Several potential mechanistic explanations for the differences between sites and regions are discussed. The response patterns show the need for analyses of joint data sets from many regions and sites, in order to uncover common responses to changes in climate across large arctic regions from regional or local responses
    • …
    corecore