789 research outputs found

    Overview of the Tevatron Collider Complex: Goals, Operations and Performance

    Full text link
    For more than two decades the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for numerous physics discoveries and for many technological breakthroughs. In this article we outline the historical background that led to the construction of the Tevatron Collider, the strategy applied to evolution of performance goals over the Tevatron's operational history, and briefly describe operations of each accelerator in the chain and achieved performance.Comment: Includes modifications suggested by reviewer

    Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis

    Get PDF
    Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV infection display disordered lipid metabolism which resolves following successful anti-viral therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in hepatocarcinogenesis. We aimed to characterise variation in host lipid metabolism between participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely genotype-specific differences in lipid metabolism. We combined several lipidomic approaches: analysis was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry (MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve patients and 100 non-viraemic patients post-SVR. HCV-G3 patients had significantly decreased serum apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport pathway in HCV-G3. We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3

    Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis

    Get PDF
    Background: Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV infection display disordered lipid metabolism which resolves following successful anti-viral therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in hepatocarcinogenesis. Aims: We aimed to characterise variation in host lipid metabolism between participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely genotype-specific differences in lipid metabolism. Methods: We combined several lipidomic approaches: analysis was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry (MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve patients and 100 non-viraemic patients post-SVR. Results: HCV-G3 patients had significantly decreased serum apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport pathway in HCV-G3. Conclusions: We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3

    Muon Collider

    Full text link
    Both e+e- and {\mu}+{\mu}- colliders have been proposed as possible candidates for a lepton collider to complement and extend the reach of the Large Hadron Collider (LHC) at CERN. The physics program that could be pursued by a new lepton collider (e+e- or {\mu}+{\mu}-) with sufficient luminosity would include understanding the mechanism behind mass generation and electroweak symmetry breaking; searching for, and possibly discovering, supersymmetric particles; and hunting for signs of extra spacetime dimensions and quantum gravity. However, the appropriate energy reach for such a collider is currently unknown, and will only be determined following initial physics results at the LHC. It is entirely possible that such results will indicate that a lepton collider with a collision energy well in excess of 1 TeV will be required to illuminate the physics uncovered at LHC. Such a requirement would require consideration of muons as the lepton of choice for such a collider.Comment: v.2., 6 pp. To appear in the 2nd edition of the book Elementary Particles, Landolt-Boernstein Series published by Springer. arXiv admin note: text overlap with arXiv:physics/9901022 by other autho

    Systematics of Leading Particle Production

    Get PDF
    Using a QCD inspired model developed by our group for particle production, the Interacting Gluon Model (IGM), we have made a systematic analysis of all available data on leading particle spectra. These data include diffractive collisions and photoproduction at HERA. With a small number of parameters (essentially only the non-perturbative gluon-gluon cross section and the fraction of diffractive events) good agreement with data is found. We show that the difference between pion and proton leading spectra is due to their different gluon distributions. We predict a universality in the diffractive leading particle spectra in the large momentum region, which turns out to be independent of the incident energy and of the projectile type.Comment: 13 pages, Latex, 4 ps figures. To appear in Phys. Rev.

    COVID-19: how has a global pandemic changed manual therapy technique education in chiropractic programs around the world?

    Get PDF
    Background Manual therapy is a cornerstone of chiropractic education, whereby students work towards a level of skill and expertise that is regarded as competent to work within the field of chiropractic. Due to the COVID-19 pandemic, chiropractic programs in every region around the world had to make rapid changes to the delivery of manual therapy technique education, however what those changes looked like was unknown. Aims The aims of this study were to describe the immediate actions made by chiropractic programs to deliver education for manual therapy techniques and to summarise the experience of academics who teach manual therapy techniques during the initial outbreak of COVID-19 pandemic. Methods A qualitative descriptive approach was used to describe the immediate actions made by chiropractic programs to deliver manual therapy technique education during the COVID-19 pandemic. Chiropractic programs were identified from the webpages of the Councils on Chiropractic Education International and the Council on Chiropractic Education – USA. Between May and June 2020, a convenience sample of academics who lead or teach in manual therapy technique in those programs were invited via email to participate in an online survey with open-ended questions. Responses were entered into the NVivo software program and analysed using a reflexive thematic analysis by a qualitative researcher independent to the data collection. Results Data from 16 academics in 13 separate chiropractic programs revealed five, interconnected themes: Immediate response; Move to online delivery; Impact on learning and teaching; Additional challenges faced by educators; and Ongoing challenges post lockdown. Conclusion This study used a qualitative descriptive approach to describe how some chiropractic programs immediately responded to the initial outbreak of the COVID-19 pandemic in their teaching of manual therapy techniques. Chiropractic programs around the world provided their students with rapid, innovative learning strategies, in an attempt to maintain high standards of chiropractic education; however, challenges included maintaining student engagement in an online teaching environment, psychomotor skills acquisition and staff workload

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
    • …
    corecore