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Infection with the hepatitis C virus 
causes viral genotype‑specific 
differences in cholesterol 
metabolism and hepatic steatosis
David A. Sheridan1*, Isaac Thom Shawa1,2, E. Louise Thomas3, Daniel J. Felmlee1, 
Simon H. Bridge4, Dermot Neely5, Jeremy F. Cobbold6, Elaine Holmes2, 
Margaret F. Bassendine7 & Simon D. Taylor‑Robinson8

Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV 
infection display disordered lipid metabolism which resolves following successful anti-viral 
therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk 
factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in 
hepatocarcinogenesis. We aimed to characterise variation in host lipid metabolism between 
participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely 
genotype-specific differences in lipid metabolism. We combined several lipidomic approaches: analysis 
was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and 
non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained 
from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic 
methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry 
(MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography 
MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution 
determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-
fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve 
patients and 100 non-viraemic patients post-SVR. HCV-G3 patients had significantly decreased serum 
apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-
G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions 
in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport 
pathway in HCV-G3. We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised 
by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, 
associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light 
on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3.
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BCAA​	� Branched chain amino acids
BMI	� Body-mass index
CCA​	� Cholangiocarcinoma
CETP	� Cholesteryl ester transfer protein
CHC	� Chronic hepatitis C
CID	� Collision-induced dissociation
CL	� Cholesteryl linoleate
CT	� Computed tomography
CV‐ANOVA	� ANOVA of cross‐validated residuals
DDA	� Data-dependent acquisition
ESI	� Electrospray ionization
ESI−	� Electrospray ionisation negative mode
ESI+ 	� Electro spray ionisation positive mode
HCC	� Hepatocellular carcinoma
HCV	� Hepatitis C
HCV-G1	� Hepatitis C genotype 1
HCV-G3	�  Hepatitis C genotype 3
HDL	�  High density lipoprotein
HOMA-IR	�  Homeostatic model assessment for insulin resistance
IHCL	�  Intra-hepatocellular lipid
S IMCL	� Intra-myocellular lipids in soleus muscle
T IMCL	�  Intra-myocellular lipids in tibialis muscle
IPA	�  Iso-propyl alcohol
LC-MS	� Liquid chromatography mass spectroscopy
LCAT​	� Lecithin-cholesterol acyl transferase
LDL	� Low density lipoprotein
LXR	� Liver X receptors
LVP	� Lipoviral particles
MRI	� Magnetic resonance imaging
MRS	� Magnetic resonance spectroscopy
MTP	� Microsomal triglyceride transfer protein
NEFA	� Non-esterified fatty acids
NMR	� Nuclear magnetic resonance
OPLS-DA	� Orthogonal projections to latent structures discriminant analysis
PC	� Phosphatidylcholine
PhC	� Phosphocholine
QC	� Quality control
RP	� Reverse phase
SVR	� Sustained viral response
TG	� Triglyceride
TOF	� Time of flight
UPLC	� Ultra performance liquid chromatography
VLDL	� Very low density lipoprotein

The life cycle of the hepatitis C virus (HCV) is interwoven with lipids at both the hepatocellular stages of 
virus entry, replication, and assembly (reviewed in1) and in the circulation with the formation of complex 
lipoviral particles (LVP) (reviewed in2). Chronic HCV infection (CHC) causes disordered lipid metabolism3, 
and is associated both with lower serum concentrations of low-density lipoprotein (LDL) cholesterol and with 
hepatic steatosis4,5 that resolves following successful anti-viral therapy6,7, particularly in those infected by HCV 
genotype-3 (HCV-G3). Additionally HCV-G3 has been found to be associated with more rapid liver fibrosis 
progression8,9 and an increased risk of developing hepatocellular cancer (HCC)9,10, compared to HCV genotype 
1 (HCV-G1), independent of patients’ age, diabetic status, body mass index, or antiviral treatment. A more recent 
Korean study of 1448 consecutive CHC patients has proposed HCV-G3 as an independent risk factor for HCC 
and disease progression11. Given the reliance of HCV on host lipid metabolism and clinical challenges posed by 
HCV-G3 infection, a detailed understanding of lipid perturbation in comparison with HCV-G1 may be relevant 
for understanding natural history of liver disease progression. Evidence is accumulating that lipogenic proteins 
are involved in hepatic carcinogenesis12 and our previous work has suggested genotype differences in lipoprotein 
metabolism13. In this study, we aimed to further characterise variation in host lipid metabolism between subjects 
chronically infected with HCV-G1 and HCV-G3.

We have combined several approaches to interrogation of lipid metabolism; initially analysis of the lipi-
dome between subjects infected with HCV-G1and HCV-G3, both in the fasting and non-fasting states, and 
after sustained virological response (SVR) was performed to identify likely virally-mediated differences in lipid 
metabolism between the genotypes. Differences in the lipidomes have been correlated with detailed phenotyping 
of body fat distribution by in vivo magnetic resonance imaging and spectroscopy, including measurements of 
liver, adipose tissue and intramyocellular fat content in a sub-group of participants.

Additionally, for further mechanistic insight into virally-mediated lipid metabolism disturbances, measure-
ment of non-cholesterol sterols in plasma was undertaken; this permitted evaluation of the relative contributions 
of endogenous cholesterol synthesis and dietary cholesterol absorption to whole body cholesterol homeostasis. 
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Such non-cholesterol sterols are present in small quantities in plasma, distributed and transported with endog-
enously and exogenously derived cholesterol in all the lipoprotein classes. Lathosterol and desmosterol are late 
precursors in the endogenous cholesterol biosynthetic (mevalonate) pathway (Fig. 1). Absolute serum lathosterol 
and desmosterol concentrations and ratios to total serum cholesterol (i.e. lathosterol : total cholesterol ratio 
and desmosterol : total cholesterol ratio) are an index of endogenous cholesterol biosynthesis14 and were also 
investigated in this study. Sitosterol is a plant sterol, derived exclusively from diet and is therefore an index of 
intestinal cholesterol absorption15,16. Cholestanol is produced endogenously from cholesterol, excreted in bile and 
then reabsorbed. Serum concentrations of cholestanol reflect cholesterol absorption under physiologic condi-
tions. Cholestanol is increased in cholestatic liver diseases due to decreased biliary secretion17. Investigation of 
these pathways allowed greater insight into the disturbances of lipid metabolism caused by the different HCV 
genotypes and may allow further insight into the differing propensity for liver cancer development amongst 
differing viral genotypes.

Methods
Patients.  Participants with chronic HCV infection were recruited at two centres: Newcastle-upon-Tyne and 
Imperial College London. All participants gave written, informed consent and the study had ethical approval 
(Northumberland REC 07/H0902/45 and Fife and Forth Valley REC 07/S0501/21). The research was performed 
in accordance with the relevant guidelines/regulations set out by the Northumberland and Fife and Forth Valley 
research ethics committees, and was performed in accordance with the Declaration of Helsinki of 1975.

All participants were age ≥ 18 years, HCV-RNA positive for > 6 months, and not on a lipid modulating agent 
for 3-months prior to the study. Patients with hepatitis B, hepatitis delta, or HIV co-infection, or alcohol depend-
ency were excluded. All participants attended following a > 8 h overnight fast for sample collection. The fasted 
cohort consisted of 112 fasting sera (39 G3, 73 G1); 25% had compensated cirrhosis evidenced by Fibros-
can > 12.5 kPa (Echosens, Paris, France). Baseline clinical and demographic data are shown in Table 1.

In addition, a second cohort of non-fasted serum samples were obtained from the HCV Research UK Clinical 
Database and Biobank (Glasgow, UK) and comprised 150 treatment naïve chronic HCV patients (75 HCV-G1, 
75 HCV-G3), matched to the fasted cohort for age, sex, body-mass index (BMI) and the presence of cirrhosis. 

Figure 1.   Schematic of the endogenous cholesterol biosynthetic pathway. Cholesterol synthesis involves 
a complex series of enzymatic reactions from the 2 carbon acetyl CoA to 27 carbon cholesterol. De novo 
cholesterol biosynthesis takes place in the ER membrane, also the site of HCV replication. The rate limiting 
step is the activity of 3-hydroxy-3-methylglutaryl (HMG) CoA reductase and the production of mevalonate. 
The post mevalonate intermediate geranylgeranyl is required for HCV replication. Geranyl that is not used 
in prenylation is converted to farnesyl and subsequently to squalene, then to lanosterol18. From lanosterol, 
cholesterol biosynthesis can proceed by two routes: via a desmosterol intermediate (Bloch pathway), or via 
a lathosterol intermediate (Kandutsch-Russel pathway), with flux across the two pathways regulated by ∆24 
dehydrocholesterol reductase (DHCR24).
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A further 100 samples (50 HCV-G1, 50 HCV-G3) were obtained from the HCV Research UK Clinical Database 
and Biobank from individuals following a sustained virological response (SVR) after successful antiviral treat-
ment (the SVR cohort).

Liver function tests and serum glucose measurements.  Standard serum liver function test and 
serum glucose measurements were performed on the serum samples from all participants. Aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT) and serum glucose were measured by standard bio-
chemical methodologies using British National Health Service (NHS) laboratory protocols (https://​www.​engla​
nd.​nhs.​uk/​wp-​conte​nt/​uploa​ds/​2021/​09/​B0960-​optim​ising-​blood-​testi​ng-​secon​dary-​care.​pdf).

Fasting lipid profiling.  Fasting serum lipids were measured using standard enzymatic methods. Where 
appropriate, LDL cholesterol was calculated using the Friedewald equation. Apolipoprotein B concentrations 
were measured by automated rate nephelometric methods (BNII, Dade Behring Ltd, Milton Keynes, Bucking-
hamshire, UK). Insulin was measured by ELISA (Linco Research Inc, St Charles, Missouri, USA). Lathosterol, 
desmosterol, cholestanol and sitosterol were measured by gas-chromatography mass spectrometry, (GC–MS), 
exactly as described previously by Kelley19.

Phenotyping of body fat distribution.  A subgroup of 13 consecutively-attending participants from the 
fasted cohort (6 HCV-G1, 7 HCV-G3) at Imperial College London had additional detailed clinical phenotyp-
ing performed by determination of whole body fat distribution using in vivo magnetic resonance spectroscopy 
(MRS) to quantify intra-hepatocellular lipid (IHCL), intra-myocellular lipids in tibialis (T IMCL) and soleus 
muscles (S IMCL), and distribution of adipose tissue fat (% visceral and non-visceral fat) using magnetic reso-
nance imaging, as previously described in detail by Thomas and colleagues20.

Briefly, 1H MR spectra were acquired from the liver and muscles of the left calf using a surface coil on a 
1.5 T Phillips Achieva scanner (Phillips, Best, the Netherlands). Pilot images were obtained to ensure accurate 
positioning of the (20 × 20 × 20 mm) voxel in the liver (avoiding blood vessels, the gallbladder and fatty tissue) 
and muscles, ensuring correct placement in the soleus and tibialis muscles. A PRESS sequence (repetition time 
1500 ms, echo time 135 ms) was used20. Spectra were analysed using jMRUI, with IHCL measured relative to 
liver water and IMCL measured relative to total muscle creatine20. Visceral and non-visceral fat were measured 
during the same examination. 10-mm thick contiguous axial T1-weighted MR images were obtained throughout 
the body which were analyzed using SliceOmatic (Tomovision, Montreal, Quebec, Canada).

Ultra performance liquid chromatography mass spectroscopy (UPLC‑MS) lipidomics.  All sam-
ples were thawed at 4 °C and prepared for UPLC-MS analysis by isopropanol protein precipitation by addition 
of 150µL of cold isopropanol to each 50 µL serum sample (ratio 3:1), exactly as previously described by Sarafian 

Table 1.   Clinical and laboratory characteristics of fasting cohort. NEFA non-esterified fatty acids, HOMA-IR 
Homeostatic Model Assessment for Insulin Resistance. Significant values are in bold.

Post prandial status

Fasting samples cohort N = 112

Fasting > 8 h P value

HCV genotype 1 3

HCV Viraemic Yes

N 73 39

Age years 48.3 ± 9.9 48.1 ± 10.6 0.918

Male (%)/female 50 (68%)/23 (32%) 30 (77%)/9 (23%)

BMI (kg/m2) 25.4 ± 4.0 25.3 ± 3.0 0.902

Fibroscan LSM KPa Median (Q1-Q3) 7.35 (5.3–16.1) 8.8 (6.5–16.4) 0.143

% Cirrhosis (LSM ≥ 12.5 kPa) 25% 25% NS

ALT IU/L 96.8 ± 80.5 117.2 ± 68.4 0.030

AST IU/L 76.7 ± 63.4 91.2 ± 46.0 0.022

Total cholesterol mmol/L 4.62 ± 0.95 3.74 ± 0.91  < 0.001

HDL cholesterol mmol/L 1.26 ± 0.36 1.26 ± 0.45 0.953

Non-HDL cholesterol mmol/L 3.36 ± 0.95 2.43 ± 0.82  < 0.001

Triglycerides mmol/L 1.31 ± 0.68 1.01 ± 0.72 0.035

apoB g/L 0.88 ± 0.26 0.64 ± 0.20  < 0.001

apoA1 g/L 1.47 ± 0.29 1.41 ± 0.32 0.328

Fasting glucose mmol/L 5.0 ± 0.69 5.44 ± 1.22 0.095

Fasting insulin μIU/mL 8.07 ± 5.68 7.37 ± 4.11 0.783

HOMA-IR 1.77 ± 1.52 1.88 ± 1.32 0.463

NEFA mM 0.50 ± 0.04 0.54 ± 0.06 0.596

https://www.england.nhs.uk/wp-content/uploads/2021/09/B0960-optimising-blood-testing-secondary-care.pdf
https://www.england.nhs.uk/wp-content/uploads/2021/09/B0960-optimising-blood-testing-secondary-care.pdf
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and colleagues in 201421. Quality control (QC) samples were prepared by pooling equal volumes of all samples 
and injecting into the mass spectrometry system at regular intervals throughout the analytical runs, in order to 
define the system suitability, analytical stability, and sample repeatability. Serum lipid UPLC-MS profiling was 
performed using an ACQUITY UPLC system (Waters Ltd., Elstree, UK), coupled to a Q-ToF Premier mass 
spectrometer (Waters MS Technologies Ltd, Manchester, UK) using an electrospray (ESI) ion source operated in 
both positive and negative electrospray ionisation modes (ESI + and ESI-).

Liquid chromatography (LC) conditions have been previously described by Eliasson and colleagues in 201222. 
Separation was done in a Waters Acquity UPLC HSS CSH column (1.7 μm, 2.1 × 100 mm) maintained at 55 °C. 
Mobile phases consisted of acetonitrile (ACN)/H2O (60:40) (A) and iso-propyl alcohol (IPA)/ACN (90:10) (B), 
both containing 10 mM ammonium formate and 0.1% (v/v) formic acid. The flow rate was set at 0.4 mL/min. 
Injection volume was 5 µL and 15 µL for positive (ESI + ve) and negative (ESI –ve) modes, respectively.

ESI conditions were as follows: capillary voltage for ESI- 2500 V, for ESI + ve 3000 V, cone voltage 25 V for ESI 
-ve and 30 V for ESI + ve, source temperature 120 °C, desolvation temperature 400 °C, cone gas flow 25L/h, des-
olvation gas 800L/h. Data were collected in centroid mode. For mass accuracy, leucine enkephalin (555.2692 Da 
calculated monoisotopic molecular weight) was used as a lock mass. Lock mass scans were collected every 30 s 
and averaged over 3 scans to perform mass correction. Instrument calibration was performed using sodium 
formate prior to each ESI mode.

To equilibrate the system, ten conditioning QC samples were performed at the start of acquisition. QC sam-
ples were run periodically after 10 sample injections to monitor instrument performance. Data-dependent acqui-
sition (DDA) and MSE analysis of the QC sample was performed to obtain MS/MS information for metabolite 
annotation. Candidate metabolites were annotated using accurate m/z values, fragmentation patterns, retention 
times, and the METLIN database (https://​metlin.​scrip​ps.​edu/).

MS data pre‑processing.  The UPLC-MS raw data were acquired using MassLynx software version 4.1 
(Waters, Manchester, UK) and converted in NetCDF files using Databridge; a module within MassLynx software 
4.1. The CDF files were pre-processed using XCMS package within the R statistical software version (Rx64 3.2.5), 
and in-house developed scripts.

Statistical analysis.  Where continuous data were normally distributed, two-sample t-tests were used to 
compare means between control groups. The Kruskal–Wallis test was used for comparison of non-parametric 
data. Pearson’s r correlation coefficient was used to determine relationships between continuous variables and 
Spearman’s rank analysis for correlation between non-parametric variables. P < 0.05 was taken to indicate sta-
tistical significance. All statistical analyses were carried using Minitab version 16 (Minitab, State College, PA, 
USA).

Multivariate statistical analysis.  The supervised and unsupervised multivariate models were generated 
using SIMCA (version 14.1, Umetrics, Umeå, Sweden). Principal component analysis (PCA) and orthogonal 
projections to latent structures discriminant analysis (OPLS-DA) were performed on all spectral data after 
pareto-scaling and log transformation for detection of patterns, trends and outliers; and construction of discri-
minant models were generated for classification and the discovery of potential biomarkers respectively.

Ethics approval.  Ethical approval was obtained from Northumberland Research Ethics Committee (REC 
07/H0902/45 and Fife and Forth Valley Research Ethics Committee (REC 07/S0501/21).

Consent to participate.  Prior written, informed consent was obtained from each participant.

Results
Clinical phenotype and fasting lipid profiles.  Baseline clinical phenotype demonstrated no differences 
between HCV-G1 and HCV-G3 patients from the fasted cohort in terms of physical demographics of age, sex 
and BMI or severity of liver fibrosis (Table 1).

Fasting lipid profiles were significantly different in HCV-G3 compared to HCV-G1, manifesting as reductions 
in total cholesterol, non-HDL cholesterol and apoB (Table 1). Although there was no significant different in fibro-
sis assessment by liver stiffness, HCV-G3 participants had significantly increased liver enzymes: ALT and AST.

HCV‑G3 decreases cholesterol synthesis via lathosterol rather than desmosterol intermedi‑
ates.  Non-cholesterol sterol intermediates were analysed to understand potential pathways of low choles-
terol profiles in HCV-G3. Lathosterol and desmosterol are both pre-cholesterol intermediates, and thus, serum 
concentrations reflect endogenous cholesterol synthesis. Of note, HCV-G3 patients demonstrated significantly 
decreased levels of lathosterol, without significant reductions in desmosterol concentrations in serum (Table 2), 
implying preferential suppression of cholesterol synthesis via lathosterol, with conservation of desmosterol 
pathway. HCV-G3 patients also had decreased cholestanol concentrations, but no significant difference in the 
absorption marker sitosterol. This implies decreased biliary cholesterol excretion in HCV-G3, without a com-
pensatory increase in intestinal cholesterol absorption.

HCV‑G3 subjects have increased intra‑hepatocellular lipid content (steatosis).  Detailed body 
fat distribution phenotyping with whole body MRS was performed in a subgroup of 13 CHC participants from 
cohort 1 (6 HCV-G1 and 7 HCV-G3). HCV-G3 subjects demonstrated significant increases in IHCL, compared 

https://metlin.scripps.edu/
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to HCV-G1 infected individuals (5.7 vs. 1.7 µmol/L; P = 0.003, Table 3), without other significant changes in 
IMCL in either soleus or tibialis muscles or adipose tissue compartments (Table 3).

Steatosis in HCV G3 does not correlate with markers of VLDL export.  We explored the relation-
ship between MRS intra-hepatocellular fat content [IHFC] (steatosis) and markers of cholesterol synthesis 
(lathosterol and desmosterol). IHFC showed a negative correlation with cholesterol synthesis via lathosterol in 
both HCV-G1 and HCV-G3, which was most marked in HCV-G1. However, we showed a positive correlation 
with desmosterol in both HCV-G1 and HCV-G3, which was most marked in HCV-G3 (Fig. 2). Serum apoB 
concentration demonstrated weak positive correlations with IHFC in both HCV genotypes (Fig. 3). There was 
a negative correlation between steatosis and fasting serum triglyceride (TG) levels in HCV-G1, with a non-
significant positive correlation in HCV-G3. Collectively, this implies that steatosis in HCV-G3 is unrelated to 
decreased very low density lipoprotein (VLDL) particle export, but is more related to viral suppression of cho-
lesterol synthesis via lathosterol, and relative sparing of desmosterol.

Non‑targeted ‘shotgun’ lipidomics identified novel lipid species differentially regulated 
between HCV‑G1 and HCV‑G3.  The UPLC-MS spectra from fasting sera of participants in the fasting 
CHC cohort were explored by PCA to detect clusters and outliers. Pairwise OPLS-DA established the lipids with 
the strongest contribution to genotypic separation. Figure 4 shows a PCA scores plot indicating clustering of 
HCV-G1 and HCV-G3, with close clustering of QC samples, indicating good platform stability.

Pairwise analysis using OPLS-DA established the lipid species with the greatest contribution to the genotype 
separation in positive ion mode (Supplemental Fig. 1).

Using the S-plot from the OPLS-DA model, the influence of individual lipid species (high significance and 
strong contribution to group separation) in the model were examined. Preliminary assignments were based on 
mass, fragmentation pattern and retention time of the identified lipid species that were up-regulated in HCV-
G3. The main up-regulated lipid in HCV-G3 was cholesteryl linoleate [M + NH4] + 666.621 m/z @15.47 min. 
In contrast, [M + H] + 784.588 m/z @6.29 min phosphatidylcholine (PC) (36:3) was associated with HCV-G1.

Different lipid species ionise preferentially in only one of the MS polarities; for example, triglyceride pref-
erentially ionised in ESI + whereas free fatty acids in ESI-. Thus, additional novel lipid species were found 
to be differentially up-regulated in HCV-G1 in the analysis in the negative ion mode (Supplemental Figs. 3 
and 4). Assignment of lipid species identified phosphocholines: PhC (36:3 and PhC (38:3)) and (PC(36:5 and 
PC(38:5)) respectively increased in HCV-G1, whereas cholesterol esters were the discriminant features increased 
in HCV-G3.

Further UPLC-MS analysis was performed on the non-fasted cohort, consisting of samples from 75 each of 
HCV-G1 and HCV-G3 patients, matched for age, sex, BMI and presence of cirrhosis to the fasted cohort. The 
fasting or postprandial status of the samples in the second cohort was not known at the time of sample donation 
to the HCV Research UK biobank. Supplemental Fig. 5 demonstrates the PCA for the second cohort in both 
positive and negative ionisation modes. Although the models were less robust than in the fasting samples in 

Table 2.   Sterol markers of cholesterol synthesis (lathosterol and desmosterol) and absorption (cholestanol and 
sitosterol) in fasting sera (cohort 1) (µmol/L). Significant values are in bold.

HCV genotype 1 HCV genotype 3 P value

Lathosterol 3.12 ± 2.12 2.44 ± 1.18 0.030

Desmosterol 1.39 ± 0.80 1.37 ± 0.96 0.936

Cholestanol 5.70 ± 2.08 4.78 ± 1.95 0.022

Sitosterol 5.28 ± 2.79 5.47 ± 3.87 0.788

Table 3.   Subgroup with whole body MRI fat quantification. BMI body mass index, IHCL intrahepatocellular 
lipid, S IMCL intramyocellular lipid, T IMCL tibias intramyocellular lipid. Significant values are in bold.

HCV genotype 1 HCV genotype 3 P value

N 6 7

Age (years) 49.8 ± 7.7 54.0 ± 9.2 0.394

Male/female 4M/2F 4M/3F NS

BMI (kg/m2) 25.7 ± 3.3 24.2 ± 3.2 0.420

IHCL 1.7 (0.7–3.3) 5.7 (2.9–7.6) 0.033

S IMCL 12.9 (10.7–17) 10.3 (8.69–17.5) 0.609

T IMCL 4.25 (3.3–8.0) 3.36 (1.96–7.11) 0.635

% Visceral adipose tissue 4.25 (1.73–6.25) 2.27 (1.34–4.51) 0.704

% Non visceral abdominal adipose tissue 2.69 (2.16–4.50) 3.47 (2.75–4.27) 0.950
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cohort 1, the separation of HCV-G1 and HCV-G3, based on the positive ionisation mode retained significance 
in this independent cohort (Supplemental Fig. 5).

Discriminating features of the lipidome between HCV genotypes 1 and 3 are not apparent fol‑
lowing sustained virological response.  To determine whether lipidomic differences resolve or persist 
after successful eradication of HCV following sustained virological response, further analysis was performed on 
a third cohort of non-viraemic post-SVR samples (SVR = sustained viral response following HCV antiviral treat-
ment). Supplemental Fig. 6 PCA demonstrates that there is no significant separation by previous HCV genotype 
exposure following SVR. This supports the notion that the observed genotype-specific alterations in the lipi-
dome in chronic HCV infection are due to the presence of active HCV infection and resolve with viral clearance.

Discussion
This study performed detailed characterisation of lipid metabolism in individuals chronically infected with HCV 
and demonstrated that there are distinct HCV genotype-specific changes in lipid metabolism that change follow-
ing SVR. This study is the most comprehensive description of altered lipid metabolism in subjects chronically 
infected with HCV-G3 to be reported. We have performed a combination of detailed lipid profiling in fasting 
samples, including sterol markers of cholesterol synthesis and absorption, and additional quantification of liver, 
muscle and adipose tissue fat content by in vivo MRS and MRI in a small subgroup. We then performed UPLC-
MS lipidomics analysis and made comparison between subjects with HCV-G1 and HCV-G3 in two independent 
viraemic cohorts, and a post-treatment SVR non-viraemic cohort. The findings have demonstrated that indi-
viduals chronically infected with HCV-G3 have significantly decreased serum apoB, and non-HDL cholesterol 
concentrations, in conjunction with more hepatic steatosis than those with HCV-G1. This finding in itself is not 
new, but our observations challenge the widely held assumption that the steatosis in HCV-G3 is due to impaired 
hepatic VLDL export, potentially by inhibition of microsomal triglyceride transfer protein (MTP)23. If this were 
the case, we would have expected negative correlations between liver fat with either serum apoB or TG concen-
trations in participants with HCV-G3. However, instead we observed a positive correlation between both apoB 
and TG with liver fat content in HCV-G3, and a negative correlation in individuals infected with HCV-G1. TG 
accumulation has been reported in HCC, compared to tumour adjacent tissue24 and hepatic steatosis is known 

Figure 2.   Correlation between intra-hepatocellular lipid content (steatosis) and fasting serum markers of 
endogenous cholesterol synthesis lathosterol and desmosterol in HCV genotypes 1 (N = 6) and 3 (N = 7).
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Figure 3.   Correlation between intra-hepatocellular lipid content (steatosis) and fasting serum apoB 
concentration and triglycerides in HCV genotypes 1 (N = 6) and 3 (N = 7).

Figure 4.   Principal component analysis (PCA) of fasting sera in positive electrospray ionisation mode 
demonstrating separation between HCV genotypes.
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to be linked to HCC in CHC patients25, so the mechanism(s) involved in promoting the differences between 
HCV-G3 and HCV-G1 could be relevant to hepatocarcinogenesis.

HCV-G3 subjects demonstrated an apparent divergence in decreasing markers of cholesterol synthesis, 
lathosterol and desmosterol. These two pre-cholesterol intermediates are on separate sides of the late cholesterol 
biosynthetic pathway. It appears that HCV-G3 preferentially decreases cholesterol synthesis via the lathosterol 
pathway (Fig. 1). The observation of decreased serum lathosterol levels in HCV-G3, with relatively normal des-
mosterol levels implies that HCV-G3 selectively inhibits the lathosterol arm of endogenous cholesterol synthesis. 
Low lathosterol levels have been reported in another study of HCV-G2 and HCV-G3 infection, indicating that 
HCV-G3 selectively perturbs the late cholesterol synthesis pathway26, and in HCV-G3 individuals with cir-
rhosis, low lathosterol was a predictor of virologic relapse following sofosbuvir and ribavirin treatment27. We 
measured only lathosterol and desmosterol as synthesis markers, which provides information about the relative 
flux through the two pathways, but did not measure additional upstream pre-cholesterol intermediates. Des-
mosterol is produced from reduction of 7-dehydrodesmosterol by the enzyme ∆7-sterol reductase (DHCR7) in 
the Bloch pathway. It has been reported that HCV selectively perturbs the late stages of cholesterol biosynthesis 
in HCV-G2 and HCV-G3, where lathosterol and 7-dehydrocholesterol concentrations were low, but increased 
following viral clearance, and the proximal metabolite lanosterol was preserved28. The present study adds to the 
literature by reporting low lathosterol concentrations in a larger number of HCV-G1 and HCV-G3 patients with 
chronic infection. This may contribute to the high prevalence of vitamin D deficiency among HCV patients29. 
Of additional interest is the strong negative correlation between suppressed cholesterol synthesis via lathosterol 
and increased hepatic fat content. This implies that as HCV suppresses cholesterol synthesis, pathways of hepatic 
triglyceride accumulation are being activated without diminishing VLDL export, possibly by an up-regulation 
of compensatory pathways, such as reverse cholesterol transport and liver X receptors (LXR), which are potently 
activated by desmosterol.

The data from our untargeted lipidomic analyses of the same cohorts of subjects with HCV-G1 and HCV-G3 
in the fasting state have identified additional lipid species differentially regulated between the genotypes, causing 
clear genotype specific separation of fasting sera in the PCA scores plots. Amongst lipid species accounting for 
the separation, we observed increased phosphocholines in HCV-G1 and increased cholesteryl esters, including 
cholesteryl linoleate in HCV-G3. These changes in the lipidome were not apparent in patients who achieved 
SVR following treatment for previous HCV-G1 or HCV-G3 infection, implying that the lipidomic features are 
mediated by active HCV viraemia.

Experimental data generated from expression of HCV-G3a core protein in Huh-7 cells have previously 
reported increasing expression of cholesteryl esters, ceramides and glycosylceramides, but not triglycerides 
induced by the steatogenic HCV-G3 core protein and suggested that viral steatosis may be distinct from meta-
bolic steatosis30. In vivo lipoproteins undergo continuous remodelling during their transit in plasma and we have 
reported that HCV also undergoes remodelling and transfer on to very-low density lipoproteins after a fatty 
meal31. Increased serum cholesteryl linoleate (CL) levels observed in fasting HCV-G3 participants in our study 
supports the concept that reverse cholesterol transport is also up-regulated in HCV-G3 infected participants. 
CL is a cholesteryl ester, which is not synthesised in the liver but produced in the reverse cholesterol transport 
pathway from peripheral tissues by lecithin-cholesterol acyl transferase (LCAT) activity on HDL. LCAT serves 
to maintain a cholesterol gradient between peripheral tissues and HDL. LCAT activity enriches HDL in CL as 
the predominant cholesterol ester. CL is subsequently redistributed amongst all apoB lipoprotein classes by cho-
lesteryl ester transfer protein (CETP) activity, mediating CL transfer from HDL to apoB containing lipoproteins 
as well, which are subsequently trafficked back to the liver32. CETP is increased in active HCV infection33. Up-
regulated reverse cholesterol transport to the liver may be a compensatory homeostatic response to decreased 
endogenous cholesterol synthesis in HCV-G3 infection.

Phosphatidylcholine (PC) is a highly abundant phospholipid, and functions as a major constituent of cell 
membranes. PC is a phospholipid with a typical structure of a choline head group and two fatty acids (FA). The 
FAs vary in carbon chain lengths and double bond saturation thus a PC molecule may have different fatty acid 
combinations of varying lengths and saturations attached at the sn-1 and sn-2 positions of the glycerol backbone. 
However, 16-, 18-, and 20-carbon fatty acids are the most common PCs32. In vitro, a number of intermedi-
ates involved in PC synthesis have been shown to be elevated in HCV infected Huh-7.5 cells34. In our in vivo 
lipidomics analysis, we have identified increased levels of long chain (C36 and C38) unsaturated PCs in fasting 
HCV-G1 participants. The functional importance of this is not known, but these variations in fatty acids may 
affect membrane fluidity and utility of PC associated fatty acids as a source of liver triglycerides. In sera, PC is 
associated with all lipoprotein classes, including HDL and LDL. In HDL metabolism, nascent HDL particles pro-
duced by the liver contain lipid poor apoA1, which is then secreted from the liver and gathers excess cholesterol 
and phospholipids from peripheral tissues by ABCA1- or ABCG1-mediated efflux from peripheral tissues. As 
HDL particles acquire cholesterol from peripheral tissues they increase in size, hence also acquire additional PC 
from non-hepatic tissues to accommodate the increasing surface area of the HDL particles. PC associated with 
either HDL or LDL is subsequently efficiently taken up by hepatocytes. Although we have not shown significant 
quantitative changes in ApoA1, the PC composition of HDL may be altered by HCV-G1 infection. Studies in 
mice have indicated that PC is a major and under-recognised source of FA delivery to the liver, which can be a 
quantitatively important source of hepatic triglyceride. Up to one-third of HDL-PC delivered to the liver can be 
hydrolysed by PLC and subsequently re-esterified to form hepatic triglycerides. The HDL receptor in the liver 
is SR-B1, which is responsible for selective uptake of HDL-cholesteryl esters. SR-B1 is responsible for 50% of 
uptake of PC in isolated hepatocytes35. HCV has been also demonstrated to utilise SR-B1 as a hepatocyte entry 
co-factor36,37. Therefore, increased flux of PC through the reverse cholesterol transport/SR-B1 pathway into the 
liver may favour the HCV lifecycle by utilising entry pathways via SR-B1.
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The strengths of this study are that the lipidomics analysis in cohort 1 was performed in fasting samples 
and demonstrated robust models in PCA of HCV genotype separation in the lipidome, allowing identification 
of several lipid species differentially regulated by HCV-G1 and HCV-G3, respectively. Although the trend was 
similar, the models were less robust in the second cohort, which could be explained by the fact that the post-
prandial status of the serum samples in cohort 2 and 3 were unknown, and it is likely that donations to HCV 
Research UK included variable numbers of post-prandial samples. Therefore, the contribution of viraemia to 
alterations in the lipidome apparent in the fasting state could have been masked somewhat in the presence of 
varying degrees of postprandial lipaemia.

In summary, we have demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low 
LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, and preservation of 
desmosterol levels, associated with increasing hepatic steatosis. Lipidomics analysis revealed lipid species asso-
ciated with reverse cholesterol transport specifically increased in HCV-G3, which may imply genotype-specific 
lipid mechanisms involved in liver disease progression and promotion of HCC38.

Data availability
Available from David Sheridan, Hepatology Research Group, Faculty of Health, University of Plymouth, Plym-
outh, PL6 8DH, United Kingdom; email: david.sheridan@plymouth.ac.uk.
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