27 research outputs found

    Gain-of-function Nav1.8 mutations in painful neuropathy

    Get PDF
    Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Nav1.7 have recently been found in ~30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Nav1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Nav1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Na v1.8 mutations enhance the channel's response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Nav1.8 contribute to painful peripheral neuropathy

    Sodium channel mRNA in the B104 neuroblastoma cell line

    Get PDF
    AbstractB104 neuroblastoma cells are excitable, but the ion channels underlying electrogenesis in these cells have not been identified. RT-PCR, restriction enzyme analysis and in situ hybridization were used to study sodium channel mRNAs in B104 cells. High levels of sodium channel α-subunit mRNAs III, NaG and Na6 and β1-subunit mRNA were detected by RT-PCR in B104 cells. Low levels of types I and II α-subunit mRNAs were also present. In situ hybridization with subtype-specific riboprobes detected sodium channel α-subunit mRNAs III, NaG and Na6 and β1-subunit mRNA in B104 cells; analysis of the percentage of B104 cells expressing each α-subunit mRNA subtype suggests that some cells express the mRNAs for several α-subunits

    NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.

    Get PDF
    Contains fulltext : 70933.pdf (publisher's version ) (Open Access)Gain-of-function mutations of Na(V)1.7 have been shown to produce two distinct disorders: Na(V)1.7 mutations that enhance activation produce inherited erythromelalgia (IEM), characterized by burning pain in the extremities; Na(V)1.7 mutations that impair inactivation produce a different, nonoverlapping syndrome, paroxysmal extreme pain disorder (PEPD), characterized by rectal, periocular, and perimandibular pain. Here we report a novel Na(V)1.7 mutation associated with a mixed clinical phenotype with characteristics of IEM and PEPD, with an alanine 1632 substitution by glutamate (A1632E) in domain IV S4-S5 linker. Patch-clamp analysis shows that A1632E produces changes in channel function seen in both IEM and PEPD mutations: A1632E hyperpolarizes (-7 mV) the voltage dependence of activation, slows deactivation, and enhances ramp responses, as observed in Na(V)1.7 mutations that produce IEM. A1632E depolarizes (+17mV) the voltage dependence of fast inactivation, slows fast inactivation, and prevents full inactivation, resulting in persistent inward currents similar to PEPD mutations. Using current clamp, we show that A1632E renders dorsal root ganglion (DRG) and trigeminal ganglion neurons hyperexcitable. These results demonstrate a Na(V)1.7 mutant with biophysical characteristics common to PEPD (impaired fast inactivation) and IEM (hyperpolarized activation, slow deactivation, and enhanced ramp currents) associated with a clinical phenotype with characteristics of both IEM and PEPD and show that this mutation renders DRG and trigeminal ganglion neurons hyperexcitable. These observations indicate that IEM and PEPD mutants are part of a physiological continuum that can produce a continuum of clinical phenotypes

    Depolarized Inactivation Overcomes Impaired Activation to Produce DRG Neuron Hyperexcitability in a Nav1.7 Mutation in a Patient with Distal Limb Pain

    Get PDF
    Contains fulltext : 137755.pdf (publisher's version ) (Open Access)Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain

    Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons

    Get PDF
    Two tetrodotoxin-resistant (TTX-R) voltage-gated sodium channels, SNS and NaN, are preferentially expressed in small dorsal root ganglia (DRG) and trigeminal ganglia neurons, most of which are nociceptive, of rat and mouse. We report here the sequence of NaN from human DRG, and demonstrate the presence of two TTX-R currents in human DRG neurons. One current has physiological properties similar to those reported for SNS, while the other displays hyperpolarized voltage-dependence and persistent kinetics; a similar TTX-R current was recently identified in DRG neurons of sns-null mouse. Thus SNS and NaN channels appear to produce different currents in human DRG neurons

    Deletion mutation of sodium channel Na(V)1.7 in inherited erythromelalgia: enhanced slow inactivation modulates dorsal root ganglion neuron hyperexcitability

    No full text
    Item does not contain fulltextGain-of-function missense mutations of voltage-gated sodium channel Na(V)1.7 have been linked to the painful disorder inherited erythromelalgia. These mutations hyperpolarize activation, slow deactivation and enhance currents evoked by slow ramp stimuli (ramp currents). A correlation has recently been suggested between the age of onset of inherited erythromelalgia and the extent of hyperpolarizing shifts in mutant Na(V)1.7 channel activation; mutations causing large activation shifts have been linked to early age of onset inherited erythromelalgia, while mutations causing small activation shifts have been linked to age of onset within the second decade of life. Here, we report a family with inherited erythromelalgia with an in-frame deletion of a single residue--leucine 955 (Del-L955) in DII/S6. The proband did not show symptoms until the age of 15 years, and her affected mother only experienced mild symptoms during adolescence, which disappeared at the age of 38 years. Del-L955 shows no effect on Na(V)1.7 current density and fast inactivation, but causes an approximately -24 mV shift in activation, together with increases in amplitude of persistent currents and ramp currents. The mutation also produces an approximately -40 mV shift in slow inactivation, which reduces channel availability. Comparison of the effects of the Del-L955 mutation on dorsal root ganglion neuron hyperexcitability with those produced by another inherited erythromelalgia mutation (L858F) that does not enhance slow inactivation suggests that a delayed age of onset and milder symptoms in association with a large shift of channel activation, enhanced persistent and enhanced ramp currents may be related to the approximately -40 mV shift in slow inactivation for Del-L955, the largest shift thus far demonstrated in mutant Na(V)1.7 channels. Our results suggest that despite the pivotal role of activation shift in inherited erythromelalgia development, slow inactivation may regulate clinical phenotype by altering channel availability

    A new Nav1.7 sodium channel mutation I234T in a child with severe pain.

    No full text
    Item does not contain fulltextDominant gain-of-function mutations that hyperpolarize activation of the Na(v)1.7 sodium channel have been linked to inherited erythromelalgia (IEM), a disorder characterized by severe pain and redness in the feet and hands in response to mild warmth. Pharmacotherapy remains largely ineffective for IEM patients with cooling and avoidance of triggers being the most reliable methods to relieve pain. We now report a 5 year old patient with pain precipitated by warmth, together with redness in her hands and feet. Her pain episodes were first reported at 12 months, and by the age of 15-16 months were triggered by sitting as well as heat. Pain has been severe, inducing self-mutilation, with limited relief from drug treatment. Our analysis of the patient's genomic DNA identified a novel Na(v)1.7 mutation which replaces isoleucine 234 by threonine (I234T) within domain I/S4-S5 linker. Whole-cell voltage-clamp analysis shows a I234T-induced shift of -18 mV in the voltage-dependence of activation, accelerated time-to-peak, slowed deactivation and enhanced responses to slow ramp depolarizations, together with a -21 mV shift in the voltage-dependence of slow-inactivation. Our data show that I234T induces the largest activation shift for Na(v)1.7 mutations reported thus far. Although enhanced slow-inactivation may attenuate the gain-of-function of the I234T mutation, the shift in activation appears to be dominant, and is consistent with the severe pain symptoms reported in this patient.1 oktober 201

    Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use

    No full text
    Item does not contain fulltextHuman studies have firmly implicated voltage-gated sodium channels in human pain disorders, and targeted and massively parallel genomic sequencing is beginning to be used in clinical practice to determine which sodium channel variants are involved. Missense substitutions of SCN9A, the gene encoding sodium channel NaV1.7, SCN10A, the gene encoding sodium channel NaV1.8, and SCN11A, the gene encoding sodium channel NaV1.9, produce gain-of-function changes that contribute to pain in many human painful disorders. Genomic sequencing might help to establish a diagnosis, and in the future might support individualisation of therapeutic approaches. However, in many cases, and especially in sodium channelopathies, the results from genomic sequencing can only be appropriately interpreted in the context of an extensive functional assessment, or family segregation analysis of phenotype and genotype

    Nav1.6 regulates excitability of mechanosensitive sensory neurons

    No full text
    Peripheral sensory neurons express multiple voltage-gated sodium channels (NaV ) critical for the initiation and propagation of action potentials and transmission of sensory input. Three pore-forming sodium channel isoforms are primarily expressed in the peripheral nervous system (PNS): NaV 1.7, NaV 1.8 and NaV 1.9. These sodium channels have been implicated in painful and painless channelopathies and there has been intense interest in them as potential therapeutic targets in human pain. Emerging evidence suggests NaV 1.6 channels are an important isoform in pain sensing. This study aimed to assess, using pharmacological approaches, the function of NaV 1.6 channels in peripheral sensory neurons. The potent and NaV 1.6 selective β-scorpion toxin Cn2 was used to assess the effect of NaV 1.6 channel activation in the PNS. The multidisciplinary approach included Ca2+ imaging, whole-cell patch-clamp recordings, skin-nerve and gut-nerve preparations and in vivo behavioural assessment of pain. Cn2 facilitates NaV 1.6 early channel opening, and increased persistent and resurgent currents in large-diameter dorsal root ganglion (DRG) neurons. This promotes enhanced excitatory drive and tonic action potential firing in these neurons. In addition, NaV 1.6 channel activation in the skin and gut leads to increased response to mechanical stimuli. Finally, intra-plantar injection of Cn2 causes mechanical but not thermal allodynia. This study confirms selectivity of Cn2 on NaV 1.6 channels in sensory neurons. Activation of NaV 1.6 channels, in terminals of the skin and viscera, leads to profound changes in neuronal responses to mechanical stimuli. In conclusion, sensory neurons expressing NaV 1.6 are important for the transduction of mechanical information in sensory afferents innervating the skin and viscera.Mathilde R. Israel, Brian S. Tanaka, Joel Castro, Panumart Thongyoo, Samuel D. Robinson, Peng Zhao, Jennifer R. Deuis, David J. Craik, Thomas Durek, Stuart M. Brierley, Stephen G Waxman, Sulayman D. Dib-Hajj, Irina Vette

    Two independent mouse lines carrying the Na(v)1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype

    Get PDF
    Small-fiber neuropathy (SFN), characterized by distal unmyelinated or thinly myelinated fiber loss, produces a combination of sensory dysfunction and neuropathic pain. Gain-of-function variants in the sodium channel Na(v)1.7 that produce dorsal root ganglion (DRG) neuron hyperexcitability are present in 5% to 10% of patients with idiopathic painful SFN. We created 2 independent knock-in mouse lines carrying the Na(v)1.7 I228M gain-of-function variant, found in idiopathic SFN. Whole-cell patch-clamp and multielectrode array recordings show that Na(v)1.7 I228M knock-in DRG neurons are hyperexcitable compared with wild-type littermate-control neurons, but despite this, Na(v)1.7 I228M mice do not display mechanical or thermal hyperalgesia or intraepidermal nerve fiber loss in vivo. Therefore, although these 2 Na(v)1.7 I228M knock-in mouse lines recapitulate the DRG neuron hyperexcitability associated with gain-of-function mutations in Na(v)1.7, they do not recapitulate the pain or neuropathy phenotypes seen in patients. We suggest that the relationship between hyperexcitability in sensory neurons and the pain experienced by these patients may be more complex than previously appreciated and highlights the challenges in modelling channelopathy pain disorders in mice
    corecore