11 research outputs found

    Approximate well-supported Nash equilibria in symmetric bimatrix games

    Full text link
    The ε\varepsilon-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε\varepsilon to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε\varepsilon currently known for which there is a polynomial-time algorithm that computes an ε\varepsilon-well-supported Nash equilibrium in bimatrix games is slightly below 2/32/3. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a (1/2+δ)(1/2+\delta)-well-supported Nash equilibrium, for an arbitrarily small positive constant δ\delta

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    A Direct Reduction from k-Player to 2-Player Approximate Nash Equilibrium

    Full text link
    We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.Comment: 21 page

    Approximate well-supported Nash equilibria below two-thirds

    No full text
    In an ε-Nash equilibrium, a player can gain at most ε by changing his behaviour. Recent work has addressed the question of how best to compute ε-Nash equilibria, and for what values of ε a polynomial-time algorithm exists. An ε-well-supported Nash equilibrium (ε-WSNE) has the additional requirement that any strategy that is used with non-zero probability by a player must have payoff at most ε less than a best response. A recent algorithm of Kontogiannis and Spirakis shows how to compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we introduce a new technique that leads to an improvement to the worst-case approximation guarantee

    Motorist Joan Richmond who competed at Monte Carlo, New South Wales, 7 August 1931 [picture].

    No full text
    Title devised from accompanying information where available.; Part of the: Fairfax archive of glass plate negatives.; Fairfax number: 4507.; Also available online at: http://nla.gov.au/nla.pic-vn6247652; Acquired from Fairfax Media, 2012

    Johannes Vermeer’s ‘young woman seated at a virginal’

    No full text
    We present a novel polynomial time approximation scheme for two-strategy anonymous games, in which the players' utility functions, although potentially different, do not differentiate among the identities of the other players. Our algorithm computes an epseps-approximate Nash equilibrium of an nn-player 2-strategy anonymous game in time poly(n)(1/eps)O(1/eps2)poly(n) (1/eps)^{O(1/eps^2)}, which significantly improves upon the running time nO(1/eps2)n^{O(1/eps^2)} required by the algorithm of Daskalakis & Papadimitriou, 2007. The improved running time is based on a new structural understanding of approximate Nash equilibria: We show that, for any epseps, there exists an epseps-approximate Nash equilibrium in which either only O(1/eps3)O(1/eps^3) players randomize, or all players who randomize use the same mixed strategy. To show this result we employ tools from the literature on Stein's Method

    On the existence of optimal taxes for network congestion games with heterogeneous users

    No full text
    Abstract. We consider network congestion games in which a finite number of non-cooperative users select paths. The aim is to mitigate the inefficiency caused by the selfish users by introducing taxes on the network edges. A tax vector is strongly (weakly)-optimal if all (at least one of) the equilibria in the resulting game minimize(s) the total latency. The issue of designing optimal tax vectors for selfish routing games has been studied extensively in the literature. We study for the first time taxation for networks with atomic users which have unsplittable traffic demands and are heterogeneous, i.e., have different sensitivities to taxes. On the positive side, we show the existence of weakly-optimal taxes for single-source network games. On the negative side, we show that the cases of homogeneous and heterogeneous users differ sharply as far as the existence of strongly-optimal taxes is concerned: there are parallellink games with linear latencies and heterogeneous users that do not admit strongly-optimal taxes
    corecore