58 research outputs found

    Spin interactions and switching in vertically tunnel-coupled quantum dots

    Full text link
    We determine the spin exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic (B) and electric (E) fields (both in-plane and perpendicular) are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a pronounced jump in the magnetization at in-plane fields of a few Tesla, and perpendicular fields of the order of 10 Tesla for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calculate the exchange J using the Heitler-London and Hund-Mulliken technique, including the long-range Coulomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet states and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled, we present a simple method to switch on and off the spin coupling with exponential sensitivity using an in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure

    Biotransformation and bioactivation reactions–2016 literature highlights

    No full text
    We are pleased to present a second annual issue highlighting a previous year’s literature on biotransformation and bioactivation. Each contributor to this issue worked independently to review the articles published in 2016 and proposed three to four articles, which he or she believed would be of interest to the broader research community. In each synopsis, the contributing author summarized the procedures, analyses and conclusions as described in the original manuscripts. In the commentary sections, our authors offer feedback and highlight aspects of the work that may not be apparent from an initial reading of the article. To be fair, one should still read the original article to gain a more complete understanding of the work conducted. Most of the articles included in this review were published in Drug Metabolism and Disposition or Chemical Research in Toxicology, but attempts were made to seek articles in 25 other journals. Importantly, these articles are not intended to represent a consensus of the best papers of the year, as we did not want to make any arbitrary standards for this purpose, but rather they were chosen by each author for their notable findings and descriptions of novel metabolic pathways or biotransformations. I am pleased that Drs. Rietjens and Dalvie have again contributed to this annual review. We would like to welcome Grover P Miller as an author for this year’s issue, and we thank Tom Baillie for his contributions to last year’s edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. Finally, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. This article is dedicated to Professor Thomas Baillie for his exceptional contributions to the field of drug metabolism

    Biotransformation and bioactivation reactions – 2017 literature highlights

    No full text
    This annual review is the third one to highlight recent advances in the study and assessment of biotransformations and bioactivations (Table 1). We followed the same format as the previous years with selection and authoring each section (see Baillie et al. 2016; Khojasteh et al. 2017). We acknowledge that many universities no longer train students in mechanistic biotransformation studies reflecting a decline in the investment for those efforts by public funded granting institutions. We hope this work serves as a resource to appreciate the knowledge gained each year to understand and hopefully anticipate toxicological outcomes dependent on biotransformations and bioactivations. This effort itself also continues to evolve. I am pleased that Drs. Rietjens and Miller have again contributed to this annual review. We would like to welcome Kaushik Mitra as an author for this year’s issue, and we thank Deepak Dalvie for his contributions to last year’s edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. As always, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review.</p

    Biotransformation and bioactivation reactions – 2018 literature highlights

    No full text
    In the past three decades, ADME sciences have become an integral component of the drug discovery and development process. At the same time, the field has continued to evolve, thus, requiring ADME scientists to be knowledgeable of and engage with diverse aspects of drug assessment: from pharmacology to toxicology, and from in silico modeling to in vitro models and finally in vivo models. Progress in this field requires deliberate exposure to different aspects of ADME; however, this task can seem daunting in the current age of mass information. We hope this review provides a focused and brief summary of a wide array of critical advances over the past year and explains the relevance of this research (Table 1). We divided the articles into categories of (1) drug optimization, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation. This annual review is the fourth of its kind (Baillie et al. 2016; Khojasteh et al. 2017, 2018). We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. This effort in itself also continues to evolve. I am pleased that Rietjens, Miller, and Mitra have again contributed to this annual review. We would like to welcome Namandjé N. Bumpus, James P. Driscoll, and Donglu Zhang as authors for this year’s issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.</p

    Novel advances in biotransformation and bioactivation research-2019 year in review

    No full text
    Biotransformation is one of the main mechanisms used by the body to eliminate drugs. As drug molecules become more complicated, the involvement of drug metabolizing enzymes increases beyond those that are typically studied, such as the cytochrome P450 enzymes. In this review, we try to capture the many outstanding articles that were published in the past year in the field of biotransformation (see Table 1). We have divided the articles into two categories of (1) metabolites and drug metabolizing enzymes, and (2) bioactivation and safety.  This annual review is the fifth of its kind since 2016 (Baillie et al. 2016; Khojasteh et al. 2017, 2018, 2019). This effort in itself also continues to evolve. We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. I am pleased of the continued support of Rietjens, Miller, Zhang, Driscoll and Mitra to this review. We would like to welcome Klarissa D. Jackson as a new author for this year's issue. We strive to maintain a balance of authors from academic and industry settings.  We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.</p
    • …
    corecore