228 research outputs found

    Entanglement Dynamics in 1D Quantum Cellular Automata

    Full text link
    Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum computation based on quantum cellular automata (QCA) requires only homogeneous local interactions that can be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal physical requirements for the construction of unitary QCA in a 1 dimensional Ising spin chain and demonstrate optimal pulse sequences for information transport and entanglement distribution. We also introduce the theory of non-unitary QCA and show by example that non-unitary rules can generate environment assisted entanglement.Comment: 12 pages, 8 figures, submitted to Physical Review

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a ϕ\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    A Low Complexity Scheme for Entanglement Distributor Buses

    Full text link
    For technological purposes and theoretical curiosity, it is very interesting to have a building block that produces a considerable amount of entanglement between on-demand sites through a simple control of a few sites. Here, we consider permanently-coupled spin networks and study entanglement generation between qubit pairs to find low-complexity structures capable of generating considerable entanglement between various qubit pairs. We find that in axially symmetric networks the generated entanglement between some qubit pairs is rather larger than generic networks. We show that in uniformly-coupled spin rings each pair can be considerably entangled through controlling suitable vertices. To set the location of controlling-vertices, we observe that the symmetry has to be broken for a definite time. To achieve this, a magnetic flux can be applied to break symmetry via Aharonov-Bohm effect. Such a set up can serve as an efficient entanglement distributor bus in which each vertex-pair can be efficiently entangled through exciting only one fixed vertex and controlling the evolution time. The low-complexity of this scheme makes it attractive for use in nanoscale quantum information processors.Comment: 23 pages, 4 figures, Major revision, title changed, published versio

    First-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires

    Get PDF
    The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higherTcuseful for the nano-materials design of spintronics

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : modelling of manganese removal

    Get PDF
    In the earlier work, a dynamic model for the BOF process based on the multi-zone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. This study identifies that temperature at the slag-metal reaction interface plays a major role in the Mn reaction kinetics and thus a mathematical treatment to evaluate temperature at each reaction interface has been successfully employed in the rate calculation. The Mn removal rate obtained from different zones of the converter predicts that the first stage of the blow is dominated by the oxidation of Mn at the jet impact zone, albeit some additional Mn refining has been observed as a result of the oxidation of metal droplets in emulsion phase. The mathematical model predicts that the reversion of Mn from slag to metal primarily takes place at the metal droplet in the emulsion due to an excessive increase in slag-metal interface temperature during the middle stage of blowing. In the final stage of the blow, the competition between simultaneous reactions in jet impact and emulsion zone controls the direction of mass flow of manganese. Further, the model prediction shows that the Mn refining in the emulsion is a strong function of droplet diameter and the residence time. Smaller sized droplets approach equilibrium quickly and thus contribute to a significant Mn conversion between slag and metal compared to the larger sized ones. The overall model prediction for Mn in the hot metal has been found to be in good agreement with two sets of different size top blowing converter data reported in the literature

    Barriers and enablers in the implementation of a quality improvement program for acute coronary syndromes in hospitals: a qualitative analysis using the consolidated framework for implementation research

    Get PDF
    Background: Ischemic heart disease causes a high disease burden globally and numerous challenges in treatment, particularly in developing countries such as China. The National Chest Pain Centers Program (NCPCP) was launched in China as the first nationwide, hospital-based, comprehensive, continuous quality improvement (QI) program to improve early diagnosis and standardized treatment of acute coronary syndromes (ACS) and improve patients’ clinical outcomes. With implementation and scaling up of the NCPCP, we investigated barriers and enablers in the NCPCP implementation process and provided examples and ideas for overcoming such barriers. Methods: We conducted a nationally representative survey in six cities in China. A total of 165 key informant interviewees, including directors and coordinators of chest pain centers (CPCs) in 90 hospitals, participated in semi-structured interviews. The interviews were transcribed verbatim, translated into English, and analyzed in NVivo 12.0. We used the Consolidated Framework for Implementation Research (CFIR) to guide the codes and themes. Results: Barriers to NCPCP implementation mainly arose from nine CFIR constructs. Barriers included the complexity of the intervention (complexity), low flexibility of requirements (adaptability), a lack of recognition of chest pain in patients with ACS (patient needs and resources), relatively low government support (external policies and incentives), staff mobility in the emergency department and other related departments (structural characteristics), resistance from related departments (networks and communications), overwhelming tasks for CPC coordinators (compatibility), lack of available resources for regular CPC operations (available resources), and fidelity to and sustainability of intervention implementation (executing). Enablers of intervention implementation were inner motivation for change (intervention sources), evidence strength and quality of intervention, relatively low cost (cost), individual knowledge and beliefs regarding the intervention, pressure from other hospitals (peer pressure), incentives and rewards of the intervention, and involvement of hospital leaders (leadership engagement, engaging). Conclusion: Simplifying the intervention to adapt routine tasks for medical staff and optimizing operational mechanisms between the prehospital emergency system and in-hospital treatment system with government support, as well as enhancing emergency awareness among patients with chest pain are critically important to NCPCP implementation. Clarifying and addressing these barriers is key to designing a sustainable QI program for acute cardiovascular diseases in China and similar contexts across developing countries worldwide. Trial registration: This study was registered in the Chinese Clinical Trial Registry (ChiCTR 2100043319), registered 10 February 2021
    • 

    corecore