809 research outputs found

    Optimization of plasmon–plasmon coupling in photorefractive layered media

    No full text
    In this paper we study grating-induced plasmon–plasmon coupling in photorefractive layered media using a weakcoupling approximation. The method used is applicable to general layered structures that support both plasmonic and optical modes, such as photorefractive liquid crystal cells. The approximate equations are accurate when compared to S matrix approaches and capture the plasmon propagation at the surface of the device along with the optical modes guided by the layered geometry underneath. Analysis of the resulting model provides insight into the effect of the control parameters in this device and the means to optimize the diffraction efficiency. For example, by considering the case in which the plasmon is spectrally separated from the guided modes it is possible to determine the optimum gold thickness and grating strength required to obtain the strongest possible diffraction

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10−18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 ÎŒK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale

    The Fall of Stringy de Sitter

    Full text link
    Kachru, Kallosh, Linde, & Trivedi recently constructed a four-dimensional de Sitter compactification of IIB string theory, which they showed to be metastable in agreement with general arguments about de Sitter spacetimes in quantum gravity. In this paper, we describe how discrete flux choices lead to a closely-spaced set of vacua and explore various decay channels. We find that in many situations NS5-brane meditated decays which exchange NSNS 3-form flux for D3-branes are comparatively very fast.Comment: 35 pp (11 pp appendices), 5 figures, v3. fixed minor typo

    Black Hole Chromosphere at the LHC

    Full text link
    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys. Rev. D. Additional details provided on the effect of the chromosphere in cosmic ray shower

    Phenomenology of Randall-Sundrum Black Holes

    Get PDF
    We explore the phenomenology of microscopic black holes in the S1/Z2S^1/Z_2 Randall-Sundrum (RS) model. We consider the canonical framework in which both gauge and matter fields are confined to the brane and only gravity spills into the extra dimension. The model is characterized by two parameters, the mass of the first massive graviton (m1)(m_1), and the curvature 1/ℓ1/\ell of the RS anti-de Sitter space. We compute the sensitivity of present and future cosmic ray experiments to various regions of ℓ\ell and m1,m_1, and compare with that of Runs I and II at the Tevatron. As part of our phenomenological analysis, we examine constraints placed on ℓ\ell by AdS/CFT considerations.Comment: Version to appear in Physical Review D; contains additional analysis on sensitivity of OW

    Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    Get PDF
    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp 8) in some regions of the cosmic string parameter space

    Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation

    Get PDF
    The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative \Fbeta-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in d=4d=4. The resulting renormalization group trajectories are classified and their physical relevance is discussed. The non-trivial fixed point which, if present in the exact theory, might render Quantum Einstein Gravity nonperturbatively renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure

    Detecting Microscopic Black Holes with Neutrino Telescopes

    Full text link
    If spacetime has more than four dimensions, ultra-high energy cosmic rays may create microscopic black holes. Black holes created by cosmic neutrinos in the Earth will evaporate, and the resulting hadronic showers, muons, and taus may be detected in neutrino telescopes below the Earth's surface. We simulate such events in detail and consider black hole cross sections with and without an exponential suppression factor. We find observable rates in both cases: for conservative cosmogenic neutrino fluxes, several black hole events per year are observable at the IceCube detector; for fluxes at the Waxman-Bahcall bound, tens of events per year are possible. We also present zenith angle and energy distributions for all three channels. The ability of neutrino telescopes to differentiate hadrons, muons, and possibly taus, and to measure these distributions provides a unique opportunity to identify black holes, to experimentally constrain the form of black hole production cross sections, and to study Hawking evaporation.Comment: 20 pages, 9 figure

    Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity

    Full text link
    If extra spacetime dimensions and low-scale gravity exist, black holes will be produced in observable collisions of elementary particles. For the next several years, ultra-high energy cosmic rays provide the most promising window on this phenomenon. In particular, cosmic neutrinos can produce black holes deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers. We determine the sensitivity of cosmic ray detectors to black hole production and compare the results to other probes of extra dimensions. With n \ge 4 extra dimensions, current bounds on deeply penetrating showers from AGASA already provide the most stringent bound on low-scale gravity, requiring a fundamental Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large as 4 TeV and may observe on the order of a hundred black holes in 5 years. We also consider the implications of angular momentum and possible exponentially suppressed parton cross sections; including these effects, large black hole rates are still possible. Finally, we demonstrate that even if only a few black hole events are observed, a standard model interpretation may be excluded by comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA and Fly's Eye comparison added; v3: Earth-skimming results modified and strengthened, published versio

    Experimental Probes of Localized Gravity: On and Off the Wall

    Get PDF
    The phenomenology of the Randall-Sundrum model of localized gravity is analyzed in detail for the two scenarios where the Standard Model (SM) gauge and matter fields are either confined to a TeV scale 3-brane or may propagate in a slice of five dimensional anti-deSitter space. In the latter instance, we derive the interactions of the graviton, gauge, and fermion Kaluza-Klein (KK) states. The resulting phenomenological signatures are shown to be highly dependent on the value of the 5-dimensional fermion mass and differ substantially from the case where the SM fields lie on the TeV-brane. In both scenarios, we examine the collider signatures for direct production of the graviton and gauge KK towers as well as their induced contributions to precision electroweak observables. These direct and indirect signatures are found to play a complementary role in the exploration of the model parameter space. In the case where the SM field content resides on the TeV-brane, we show that the LHC can probe the full parameter space and hence will either discover or exclude this model if the scale of electroweak physics on the 3-brane is less than 10 TeV. We also show that spontaneous electroweak symmetry breaking of the SM must take place on the TeV-brane.Comment: 62 pages, Latex, 22 figure
    • 

    corecore