396 research outputs found

    Kinetics of acute hepatitis B virus infection in humans

    Get PDF
    Using patient data from a unique single source outbreak of hepatitis B virus (HBV) infection, we have characterized the kinetics of acute HBV infection by monitoring viral turnover in the serum during the late incubation and clinical phases of the disease in humans. HBV replicates rapidly with minimally estimated doubling times ranging between 2.2 and 5.8 d (mean 3.7 ± 1.5 d). After a peak viral load in serum of nearly 1010 HBV DNA copies/ml is attained, clearance of HBV DNA follows a two or three phase decay pattern with an initial rapid decline characterized by mean half-life (t1/2) of 3.7 ± 1.2 d, similar to the t1/2 observed in the noncytolytic clearance of covalently closed circular DNA for other hepadnaviruses. The final phase of virion clearance occurs at a variable rate (t1/2 of 4.8 to 284 d) and may relate to the rate of loss of infected hepatocytes. Free virus has a mean t1/2 of at most 1.2 ± 0.6 d. We estimate a peak HBV production rate of at least 1013 virions/day and a maximum production rate of an infected hepatocyte of 200–1,000 virions/day, on average. At this peak rate of virion production we estimate that every possible single and most double mutations would be created each day

    Demonstration of a Transportable 1 Hz-Linewidth Laser

    Full text link
    We present the setup and test of a transportable clock laser at 698 nm for a strontium lattice clock. A master-slave diode laser system is stabilized to a rigidly mounted optical reference cavity. The setup was transported by truck over 400 km from Braunschweig to D\"usseldorf, where the cavity-stabilized laser was compared to a stationary clock laser for the interrogation of ytterbium (578 nm). Only minor realignments were necessary after the transport. The lasers were compared by a Ti:Sapphire frequency comb used as a transfer oscillator. The thus generated virtual beat showed a combined linewidth below 1 Hz (at 1156 nm). The transport back to Braunschweig did not degrade the laser performance, as was shown by interrogating the strontium clock transition.Comment: 3 pages, 4 figure

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure

    Optogalvanic Spectroscopy of Metastable States in Yb^{+}

    Full text link
    The metastable ^{2}F_{7/2} and ^{2}D_{3/2} states of Yb^{+} are of interest for applications in metrology and quantum information and also act as dark states in laser cooling. These metastable states are commonly repumped to the ground state via the 638.6 nm ^{2}F_{7/2} -- ^{1}D[5/2]_{5/2} and 935.2 nm ^{2}D_{3/2} -- ^{3}D[3/2]_{1/2} transitions. We have performed optogalvanic spectroscopy of these transitions in Yb^{+} ions generated in a discharge. We measure the pressure broadening coefficient for the 638.6 nm transition to be 70 \pm 10 MHz mbar^{-1}. We place an upper bound of 375 MHz/nucleon on the 638.6 nm isotope splitting and show that our observations are consistent with theory for the hyperfine splitting. Our measurements of the 935.2 nm transition extend those made by Sugiyama et al, showing well-resolved isotope and hyperfine splitting. We obtain high signal to noise, sufficient for laser stabilisation applications.Comment: 8 pages, 5 figure

    Nitrogen Retention in Headwater Streams: The Influence of Groundwater-Surface Water Exchange

    Get PDF
    Groundwater-surface water (GW-SW) interaction lengthens hydraulic residence times, increases contact between solutes and biologically active surfaces, and often creates a gradient of redox conditions conducive to an array of biogeochemical processes. As such, the interaction of hydraulic patterns and biogeochemical activity is suspected to be an important determinant of elemental spiraling in streams. Hydrologic interactions may be particularly important in headwater streams, where the extent of the GW-SW mixing environment (i.e., hyporheic zone) is proportionately greater than in larger streams. From our current understanding of stream ecosystem function, we discuss nitrogen (N) spiraling, present a conceptual model of N retention in streams, and use both of these issues to generate specific research questions and testable hypotheses regarding N dynamics in streams

    Deterministic delivery of externally cold and precisely positioned single molecular ions

    Full text link
    We present the preparation and deterministic delivery of a selectable number of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions subsequently confined in several linear Paul traps inter-connected via a quadrupole guide serves as a cold bath for a single or up to a few hundred molecular ions. Sympathetic cooling embeds the molecular ions in the crystalline structure. MgH^+ ions, that serve as a model system for a large variety of other possible molecular ions, are cooled down close to the Doppler limit and are positioned with an accuracy of one micrometer. After the production process, severely compromising the vacuum conditions, the molecular ion is efficiently transfered into nearly background-free environment. The transfer of a molecular ion between different traps as well as the control of the molecular ions in the traps is demonstrated. Schemes, optimized for the transfer of a specific number of ions, are realized and their efficiencies are evaluated. This versatile source applicable for broad charge-to-mass ratios of externally cold and precisely positioned molecular ions can serve as a container-free target preparation device well suited for diffraction or spectroscopic measurements on individual molecular ions at high repetition rates (kHz).Comment: 11 pages, 8 figure

    Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

    Full text link
    When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.Comment: 7 pages, 6 figures, submitted to Applied Physics
    • …
    corecore