29 research outputs found

    The advantage of Bolometric Interferometry for controlling Galactic foreground contamination in CMB primordial B-modes measurements

    Get PDF
    In the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination. Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging). In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that lineof-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation. We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio r in the case of unaccounted Galactic dust LOS frequency decorrelation

    Design, operation and performance of the PAON4 prototype transit interferometer

    No full text
    International audiencePAON4 is an L-band (1250–1500 MHz) small interferometer operating in transit mode deployed at the Nançay observatory in France, designed as a prototype instrument for intensity mapping. It features four 5 m diameter dishes in a compact triangular configuration, with a total geometric collecting area of |∌75 m2{\sim} 75\, \mathrm{m^2}|⁠, and is equipped with dual polarization receivers. A total of 36 visibilities are computed from the eight independent RF signals by the software correlator over the full 250 MHz RF band. The array operates in transit mode, with the dishes pointed toward a fixed declination, while the sky drifts across the instrument. Sky maps for each frequency channel are then reconstructed by combining the time-dependent visibilities from the different baselines observed at different declinations. This paper presents an overview of the PAON4 instrument design and goals, as a prototype for dish arrays to map the large-scale structure in radio, using intensity mapping of the atomic hydrogen 21 cm line. We operated PAON4 over several years and use data from observations at different periods to assess the array performance. We present a preliminary analysis of a large fraction of these data and discuss crucial issues for this type of instrument, such as the calibration strategy, instrument response stability and noise behaviour

    The advantage of Bolometric Interferometry for controlling Galactic foreground contamination in CMB primordial B-modes measurements

    No full text
    International audienceIn the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination. Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging). In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that line-of-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation. We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio rr in the case of unaccounted Galactic dust LOS frequency decorrelation

    The advantage of Bolometric Interferometry for controlling Galactic foreground contamination in CMB primordial B-modes measurements

    No full text
    International audienceIn the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination. Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging). In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that line-of-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation. We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio rr in the case of unaccounted Galactic dust LOS frequency decorrelation

    The advantage of Bolometric Interferometry for controlling Galactic foreground contamination in CMB primordial B-modes measurements

    No full text
    International audienceIn the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination. Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging). In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that line-of-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation. We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio rr in the case of unaccounted Galactic dust LOS frequency decorrelation

    Identifying frequency decorrelated dust residuals in B-mode maps by exploiting the spectral capability of bolometric interferometry

    No full text
    International audienceAstrophysical polarized foregrounds represent the most critical challenge in Cosmic Microwave Background (CMB) B-mode experiments. Multi-frequency observations can be used to constrain astrophysical foregrounds to isolate the CMB contribution. However, recent observations indicate that foreground emission may be more complex than anticipated. We investigate how the increased spectral resolution provided by band splitting in Bolometric Interferometry (BI) through a technique called spectral imaging can help control the foreground contamination in the case of unaccounted Galactic dust frequency decorrelation along the line-of-sight. We focus on the next generation ground-based CMB experiment CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI. We perform a Monte-Carlo analysis based on parametric component separation methods (FGBuster and Commander) and compute the likelihood on the recovered tensor-to-scalar ratio. The main result of this analysis is that spectral imaging allows us to detect systematic uncertainties on r from frequency decorrelation when this effect is not accounted for in component separation. Conversely, an imager would detect a biased value of r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of the dust spectral index, where we show that with BI we can measure more precisely the dust spectral index also when frequency decorrelation is present. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency decorrelation residuals where an imager of similar performance would fail. This opens the prospect to exploit this potential in the context of future CMB polarization experiments that will be challenged by complex foregrounds in their quest for B-modes detection

    Identifying frequency decorrelated dust residuals in B-mode maps by exploiting the spectral capability of bolometric interferometry

    No full text
    International audienceAstrophysical polarized foregrounds represent the most critical challenge in Cosmic Microwave Background (CMB) B-mode experiments. Multi-frequency observations can be used to constrain astrophysical foregrounds to isolate the CMB contribution. However, recent observations indicate that foreground emission may be more complex than anticipated. We investigate how the increased spectral resolution provided by band splitting in Bolometric Interferometry (BI) through a technique called spectral imaging can help control the foreground contamination in the case of unaccounted Galactic dust frequency decorrelation along the line-of-sight. We focus on the next generation ground-based CMB experiment CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI. We perform a Monte-Carlo analysis based on parametric component separation methods (FGBuster and Commander) and compute the likelihood on the recovered tensor-to-scalar ratio. The main result of this analysis is that spectral imaging allows us to detect systematic uncertainties on r from frequency decorrelation when this effect is not accounted for in component separation. Conversely, an imager would detect a biased value of r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of the dust spectral index, where we show that with BI we can measure more precisely the dust spectral index also when frequency decorrelation is present. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency decorrelation residuals where an imager of similar performance would fail. This opens the prospect to exploit this potential in the context of future CMB polarization experiments that will be challenged by complex foregrounds in their quest for B-modes detection

    Identifying frequency decorrelated dust residuals in B-mode maps by exploiting the spectral capability of bolometric interferometry

    No full text
    International audienceAstrophysical polarized foregrounds represent the most critical challenge in Cosmic Microwave Background (CMB) B-mode experiments. Multi-frequency observations can be used to constrain astrophysical foregrounds to isolate the CMB contribution. However, recent observations indicate that foreground emission may be more complex than anticipated. We investigate how the increased spectral resolution provided by band splitting in Bolometric Interferometry (BI) through a technique called spectral imaging can help control the foreground contamination in the case of unaccounted Galactic dust frequency decorrelation along the line-of-sight. We focus on the next generation ground-based CMB experiment CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI. We perform a Monte-Carlo analysis based on parametric component separation methods (FGBuster and Commander) and compute the likelihood on the recovered tensor-to-scalar ratio. The main result of this analysis is that spectral imaging allows us to detect systematic uncertainties on r from frequency decorrelation when this effect is not accounted for in component separation. Conversely, an imager would detect a biased value of r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of the dust spectral index, where we show that with BI we can measure more precisely the dust spectral index also when frequency decorrelation is present. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency decorrelation residuals where an imager of similar performance would fail. This opens the prospect to exploit this potential in the context of future CMB polarization experiments that will be challenged by complex foregrounds in their quest for B-modes detection

    Identifying frequency decorrelated dust residuals in B-mode maps by exploiting the spectral capability of bolometric interferometry

    No full text
    International audienceAstrophysical polarized foregrounds represent the most critical challenge in Cosmic Microwave Background (CMB) B-mode experiments. Multi-frequency observations can be used to constrain astrophysical foregrounds to isolate the CMB contribution. However, recent observations indicate that foreground emission may be more complex than anticipated. We investigate how the increased spectral resolution provided by band splitting in Bolometric Interferometry (BI) through a technique called spectral imaging can help control the foreground contamination in the case of unaccounted Galactic dust frequency decorrelation along the line-of-sight. We focus on the next generation ground-based CMB experiment CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI. We perform a Monte-Carlo analysis based on parametric component separation methods (FGBuster and Commander) and compute the likelihood on the recovered tensor-to-scalar ratio. The main result of this analysis is that spectral imaging allows us to detect systematic uncertainties on r from frequency decorrelation when this effect is not accounted for in component separation. Conversely, an imager would detect a biased value of r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of the dust spectral index, where we show that with BI we can measure more precisely the dust spectral index also when frequency decorrelation is present. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency decorrelation residuals where an imager of similar performance would fail. This opens the prospect to exploit this potential in the context of future CMB polarization experiments that will be challenged by complex foregrounds in their quest for B-modes detection
    corecore