20 research outputs found

    Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique

    No full text
    Β«Surface photograftingΒ» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker (N,N?-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto photoinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature, the membranes covered with the layer of imprinted polymer were obtained. The recognition sites complementary to terbumeton were formed in the membranes after extraction of the template molecules with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer composition, but without the template. The membranes' recognition properties were estimated by their capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer composition on the binding properties of the membranes has been investigated. High affinity of these membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for applications of molecularly imprinted polymer membranes in separation and solid-phase extraction.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²ΠΈΠΉ Ρ‚ΠΈΠΏ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΡˆΠ»ΡΒ­Ρ…ΠΎΠΌ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΌΡ–ΠΊΡ€ΠΎΡ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Β­ Π»Π΅Π½ΠΎΠ²ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, яка полягала Π² нанСсСнні Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΡŽ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Ρƒ, сСлСктивного Π΄ΠΎ Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄Ρƒ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρƒ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–ΡŽ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΈ Π² Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΡ–Π΄Ρ–, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½ як ΠΌΠ°Ρ‚Ρ€ΠΈΡ†ΡŽ, 2-Π°ΠΊΡ€ΠΈΠ»Π°ΠΌΡ–Π΄ΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1-ΠΏΡ€ΠΎΠΏΠ°Π½-ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²Ρƒ Π† ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρƒ Π† Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρƒ кислоту як Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ Ρ– N ,N' -ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½-бісакриламід як зшивальний Π°Π³Π΅Π½Ρ‚ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΡ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ, ΠΏΠΎΠΊΡ€ΠΈΡ‚ΠΎΡ— Ρ‚ΠΎΠ½ΠΊΠΈΠΌ ΡˆΠ°Β­Ρ€ΠΎΠΌ Ρ„ΠΎΡ‚ΠΎΡ–Π½Ρ–Ρ†Ρ–ΠΈΡ‚ΠΎΡ€Π° Π±Π΅Π½Π·ΠΎΡ„Π΅Π½ΠΎΠ½Ρƒ. Екстракція ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΒ­Π»Π΅ΠΊΡƒΠ» ΡΠΏΡ€ΠΈΡ‡ΠΈΠ½ΡŽΠ²Π°Π»Π° формування Π² структурі ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ сай­тів, які Π·Π° Ρ„ΠΎΡ€ΠΌΠΎΡŽ Ρ‚Π° ΠΏΡ€ΠΎΠ΅ΠΏΡŽΡ€ΠΎΠ²ΠΈΠΌ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½ΡΠΌ Ρ„ΡƒΠ½ΠΊΒ­Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏ Π±ΡƒΠ»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΠΌΠΈ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠšΠΎΠ½Ρ‚Β­Ρ€ΠΎΠ»ΡŒΠ½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Π»ΠΈ Π· використанням ΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— ΡΡƒΒ­ΠΌΡ–ΡˆΡ– ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Ρ–Π², Ρ‰ΠΎ Π½Π΅ містила Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. Π—Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π΄ΠΎ сСлСктивної адсорбції Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ дослідТСно Π² залСТності Π²Ρ–Π΄ Ρ‚ΠΈΠΏΡƒ Ρ‚Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π°, Π° Ρ‚Π°ΠΊΠΎΠΆ Π²Ρ–Π΄ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— зшивального Π°Π³Π΅Π½Ρ‚Π° Π² ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ–ΠΉ ΡΡƒΠΌΡ–ΡˆΡ–. Показано, Ρ‰ΠΎ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½-Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΎΠ²Π°Π½Ρ– ΠΌΠ°Ρ‚Β­Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ високою ΡΠ΅Π»Π΅ΠΊΒ­Ρ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ стосовно Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ Ρ‚Π° Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŽ Π΄ΠΎ Π½Π΅Π·Π½Π°Ρ‡Π½ΠΎΡ— адсорбції ΠΉΠΎΠ³ΠΎ структурних Π°Π½Π°Π»ΠΎΠ³Ρ–Π² β€” Ρ‚Π΅Ρ€Ρ‚Π±ΡƒΡ‚ΠΈΠ»Π°Π·ΠΈΠ½Ρƒ, Π°Ρ‚Ρ€Π°Π·ΠΈΠ½Ρƒ, дСсмСтрину Ρ– ΠΌΠ΅Ρ‚Ρ€ΠΈΠ±ΡƒΠ·ΠΈΠ½Ρƒ. Π’Π°ΠΊΡ– властивості синтСзо­ваних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ Ρ—Ρ…Π½Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ використання Ρƒ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·ΠΎΠ²Ρ–ΠΉ Скстракції.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ Π½ΠΎΠ²Ρ‹ΠΉ Ρ‚ΠΈΠΏ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ повСрхностной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΌΡΡ Π² нанСсСнии Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ слоя ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°, сСлСктивно­го ΠΊ Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠΌΡƒ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Ρƒ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ ΠΏΠΎΠ»ΠΈΒ­ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄Π΅ с использованиСм Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Π° Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π° Π² качСствС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, 2-Π°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1-ΠΏΡ€ΠΎΠΏΠ°Π½-ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²ΠΎΠΉΡ— ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ кислоты ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ N,N'-ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½-Π±ΠΈ сак Ρ€ΠΈΠ»Π°ΠΌ ΠΈΠ΄Π° ΠΊΠ°ΠΊ ΡΡˆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ агСнпш Π½Π° повСрхности ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ Ρ‚ΠΎΠ½ΠΊΠΈΠΌ слоСм Ρ„ΠΎΡ‚ΠΎΠΈΠ½ΠΈΠΈΡˆΡ‚ΡŽΡ€Π° Π±Π΅Π½Π·ΠΎΡ„Π΅Π½ΠΎΠ½Π°. Экстракция ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅Β­ΠΊΡƒΠ» ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π² структурС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ сай­тов, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Ρ… Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ простран­ствСнному Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΒ­ Π½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ синтСзоровали с использованиСм Ρ‚ΠΎΠΉ ΠΆΠ΅ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π½ΠΎΠΉ смСси Π² отсутствиС Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π°. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΌΒ­ Π±Ρ€Π°Π½ ΠΊ сСлСктивной адсорбции Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π° исслСдовали Π² зависимости ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΡΡˆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π°, Π² ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Β­Π½ΠΎΠΉ смСси. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½-ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ высокой ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ ΠΈ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°Π΄ΡΠΎΡ€Π±Ρ†ΠΈΡŽ Π΅Π³ΠΎ структурних Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² β€” Ρ‚Π΅Ρ€Ρ‚Π±ΡƒΡ‚ΠΈΠ»Π°Π·ΠΈΠ½Π°, Π°Ρ‚Ρ€Π°Π·ΠΈΠ½Π°, дСсмСтрина ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΈΠ±ΡƒΠ·ΠΈΠ½Π°. Π’Π°ΠΊΠΈΠ΅ свойства синтСзованных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… эф­фСктивного использования Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½ΠΎΠΉ экстракции

    Synthesis of biologically active molecules by imprinting polymerisation

    No full text
    Highly cross-linked molecularly imprinted polymers (MIPs) are synthetic materials with properties mimicking those of natural receptors. Here we describe an ability of MIP nanoparticles to manifest biological activity. Molecularly imprinted polymers were synthesised by co-polymerisation of urocanic acid, N,N’-bisacryloyl piperazine in the presence of herbicide binding D1 protein, ground and separated from the template by washing and ultrafiltration. It was demonstrated that MIP nanoparticles retained affinity to the template. Moreover, imprinted polymers were able to activate chloroplast photosystem II in in vitro experiments. This provides the first example of the use of imprinted polymers for the attenuation of a biological system and opens new possibilities for their application in pharmacology, biotechnology and medicine.ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ (МИП) прСдстав­ Π»ΡΡŽΡ‚ собой сСтчатыС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ сшива­ ния, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ биологичСскиС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ продСмонстрирована биологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Β­Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… наночастиц. МИП ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ вслСдствиС сополимСризации ΡƒΡ€ΠΎΠΊΠ°Π½ΠΎΠ²ΠΎΠΉ кислоты ΠΈ N,N'-бисакрилоил ΠΏΠΈΠΏΠ΅Ρ€Π°Π·ΠΈΠ½Π° Π² присутствии Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π±Π΅Π»ΠΊΠ° Π”1 ΠΊΠ°ΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹. Π”Π°Π»Π΅Π΅ ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π°Π»ΠΈ ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ выдСляли Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Β­Π½Ρ‹Ρ… наночастиц. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ частицы ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΌ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ способно­ ΡΡ‚ΡŒΡŽ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ фотосистСму II хлоропластов Π² экспСри­мСнтах in vitro. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ свойства ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… наночастиц ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠ΅ пСрспСктивы ΠΈΡ… использова­ ния Π² Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅.ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΎΠ²Π°Π½Ρ– ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈ (ΠœΠ†ΠŸ) Ρ” сітчастими ΠΏΠΎΒ­ Π»Ρ–ΠΌΠ΅Ρ€Π°ΠΌΠΈ Π· високим ступСнСм зиіивання, які Ρ–ΠΌΡ–Ρ‚ΡƒΡŽΡ‚ΡŒ Π±Ρ–ΠΎΒ­Π»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΈ. Π’ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π²ΠΏΠ΅Ρ€ΡˆΠ΅ продСмонстровано Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок. ΠœΠ†ΠŸ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ внаслідок співполімСризації ΡƒΡ€ΠΎΠΊΠ°Π½ΠΎΠ²ΠΎΡ— кислоти Ρ‚Π° NyN'-бісакрилоїлпіпСразину Π·Π° присутності Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄-Π·Π²'ΡΠ·ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Ρ–Π»ΠΊΠ° Π”1 як ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ. Π”Π°Π»Ρ– ΠΉΠΎΠ³ΠΎ ΠΏΠΎΠ΄Β­ Ρ€Ρ–Π±Π½ΡŽΠ²Π°Π»ΠΈ Ρ– Π·Π° допомогою ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–Ρ— виділяли Ρ„Ρ€Π°ΠΊΡ†Ρ–ΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок. Показано, Ρ‰ΠΎ Ρ‚Π°ΠΊΡ– час­ Ρ‚ΠΈΠ½ΠΊΠΈ ΠΌΠ°Π»ΠΈ Π°Ρ„Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», Π° Ρ‚Π°ΠΊΠΎΠΆ Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²ΡƒΠ²Π°Ρ‚ΠΈ фотосистСму II хлоропластів Π² СкспС­римСнтах in vitro. ΠŸΠΎΠ΄Ρ–Π±Π½Ρ– властивості ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок Π²Ρ–Π΄ΠΊΡ€ΠΈΠ²Π°ΡŽΡ‚ΡŒ ΡˆΠΈΡ€ΠΎΠΊΡ– пСрспСктиві Ρ—Ρ…Π½ΡŒΠΎΠ³ΠΎ викори­стання Π² Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ—, Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— Ρ‚Π° ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ–

    Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    No full text
    Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP) membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste) water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.ΠœΠ΅Ρ‚Π°. Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° простих Ρƒ використанні ΠΊΠΎΠ»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… сСнсорних систСм для швидкого Ρ– Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ визначСння Ρ„Π΅Π½ΠΎΠ»Ρƒ Ρƒ Π·Ρ€Π°Π·ΠΊΠ°Ρ… Ρ–Π· довкілля. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ молСкулярного Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΠ½Π³Ρƒ, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— in situ молСкулярно Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… (ΠœΠ†ΠŸ) ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΠΉ сСнсор створСно Π½Π° основі ΠœΠ†ΠŸ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, синтСзованих ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— in situ, які ΠΌΠ°ΡŽΡ‚ΡŒ Ρƒ своїй структурі ΡˆΡ‚ΡƒΡ‡Π½Ρ– Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ– сайти зв’язування Ρ„Π΅Π½ΠΎΠ»Ρƒ. ΠšΡ–Π»ΡŒΠΊΡ–ΡΠ½Π΅ визначСння Ρ„Π΅Π½ΠΎΠ»Ρƒ, сСлСктивно адсорбованого ΠœΠ†ΠŸ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌΠΈ, Π³Ρ€ΡƒΠ½Ρ‚ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π΄Π΅Ρ‚Π΅ΠΊΡ†Ρ–Ρ— Π·Π°Π±Π°Ρ€Π²Π»Π΅Π½ΠΎΠ³ΠΎ Ρƒ ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²ΠΈΠΉ ΠΊΠΎΠ»Ρ–Ρ€ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ ΠΉΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— Π· 4-Π°ΠΌΡ–Π½ΠΎΠ°Π½Ρ‚ΠΈΠΏΡ–Ρ€ΠΈΠ½ΠΎΠΌ. Π†Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ забарвлСння ΠœΠ†ΠŸ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ” ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†Ρ–ΠΉΠ½ΠΎΡŽ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Ρ„Π΅Π½ΠΎΠ»Ρƒ Π² Π°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎΠΌΡƒ Π·Ρ€Π°Π·ΠΊΡƒ. Π€Π΅Π½ΠΎΠ» Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΡƒΡ”Ρ‚ΡŒΡΡ Ρƒ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– 50 нМ–10 мМ, Ρ‰ΠΎ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” концСнтраціям, які Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ виявляти Ρƒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… Ρ– стічних Π²ΠΎΠ΄Π°Ρ…. Π‘Ρ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ сСнсорних систСм Π½Π° основі ΠœΠ†ΠŸ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ12 місяців Π·Π° ΠΊΡ–ΠΌΠ½Π°Ρ‚Π½ΠΎΡ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ. Висновки. БСнсорні систСми Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ високосСлСктивний Ρ– Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Ρ„Π΅Π½ΠΎΠ»Ρƒ як Ρƒ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ…, Ρ‚Π°ΠΊ Ρ– Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… (ΠΏΠΈΡ‚Π½Π°, ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Π°, стічна Π²ΠΎΠ΄Π°). ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ½ΠΎ Π΄ΠΎ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² визначСння Ρ„Π΅Π½ΠΎΠ»Ρƒ ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° систСма Ρ” ΠΏΡ€ΠΎΡΡ‚ΠΎΡŽ Ρƒ використанні Ρ‚Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ застосована Π·Π° ΠΏΠΎΠ»ΡŒΠΎΠ²ΠΈΡ… ΡƒΠΌΠΎΠ².ЦСль. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° простых Π² использовании колоримСтричСских сСнсорных систСм для быстрого ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ опрСдСлСния Ρ„Π΅Π½ΠΎΠ»Π° Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΈΠ· ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ молСкулярного ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΠ½Π³Π°, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ in situ молСкулярно ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… (МИП) ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ сСнсор создан Π½Π° основС МИП ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, синтСзированных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ in situ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π² своСй структурС синтСтичСскиС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹Π΅ сайты связывания Ρ„Π΅Π½ΠΎΠ»Π°. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π΅Π½ΠΎΠ»Π°, сСлСктивно адсорбированного МИП ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌΠΈ, основано Π½Π° Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΎΠΊΡ€Π°ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° Π΅Π³ΠΎ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ с 4-Π°ΠΌΠΈΠ½ΠΎΠ°Π½Ρ‚ΠΈΠΏΠΈΡ€ΠΈΠ½ΠΎΠΌ. Π˜Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ МИП ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„Π΅Π½ΠΎΠ»Π° Π² Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΌ ΠΎΠ±Ρ€Π°Π·Ρ†Π΅. Π€Π΅Π½ΠΎΠ» ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 50 нМ–10 мМ, Ρ‡Ρ‚ΠΎ соотвСтствуСт концСнтрациям, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹ΡΠ²Π»ΡΡ‚ΡŒ Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ сточных Π²ΠΎΠ΄Π°Ρ…. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ сСнсорных систСм Π½Π° основС МИП ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ составляСт 12 мСсяцСв ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. БСнсорныС систСмы ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ высокосСлСктивный ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ„Π΅Π½ΠΎΠ»Π° ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… (ΠΏΠΈΡ‚ΡŒΠ΅Π²Π°Ρ, природная ΠΈ сточная Π²ΠΎΠ΄Π°). По ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ опрСдСлСния Ρ„Π΅Π½ΠΎΠ»Π° прСдлоТСнная систСма проста Π² использовании ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… условиях

    Biosensors based on conductometric detection

    No full text
    The present paper is a self-review on the development of about 20 conductometric biosensors based on planar electrodes and containing different biological material (enzymes, cells, antibodies), bio-mimics or synthetic membranes, including Imprinting polymers, as a sensitive element. Highly specific, sensitive, simple, fast and cheap determination of different analytes makes them promising for needs of medicine, biotechnology, environmental control, agriculture and food industry. Non-specific interference of back-ground ions may be overcome by the differential mode of measurement, the usage of rather concentrated sample buffer and additional negatively or positively charged membranes, which decrease buffer capacity influence and extend a dynamic range of sensors response. For development of easy-to-use small conductometric immunosensors several approaches seem to be promising: i) the usage of polyaniline as electroconductive label for antibodies detection in competitive electroimmunoassay; ii) the elaboration of multilayer structures with phtalocyanine films; iii) the usage of acrylic copolymeric membranes. The advantages and disadvantages of conductometric biosensors created are discussed. For future commercialisation our effort are aimed to unite a thin-film technology with membranes deposition and to find the ways of membrane stabilisation, including bio-mimics creation, utilisation of bioaffinity polymeric membranes, imprinting polymers etc.Огляд присвячСно Π°Π½Π°Π»Ρ–Π·Ρƒ власних Ρ€ΠΎΠ±Ρ–Ρ‚ Π· Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ близько 20 ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів Π½Π° основі ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Ρ–Π² Ρ‚Π° Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΈ, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ, Π°Π½Ρ‚ΠΈΡ‚Ρ–Π»Π°), синтСтичних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ як Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². Висока ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ, низька Ρ†Ρ–Π½Π°, простота Ρ‚Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΠ½Ρ–ΡΡ‚ΡŒ визначСння Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρ€ΠΎΠ±Π»ΡΡ‚ΡŒ біосСнсори Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌΠΈ для ΠΏΠΎΡ‚Ρ€Π΅Π± ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΠΈ, Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ—Ρ–, Π΅ΠΊΠΎΠ»ΠΎΠ³ΠΈ, ΡΡ–Π»ΡŒΡΡŒΠΊΠΎΠ³ΠΎ господарства Ρ‚Π° Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— промисловості. ΠŸΡ€ΠΈ Π°Π½Π°Π»Ρ–Π·Ρ– Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² нСспСцифічний Π²ΠΏΠ»ΠΈΠ² Ρ„ΠΎΠ½ΠΎΠ²ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρ–Π² ΠΌΠΎΠΆΠ½Π° суттєво Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ завдяки Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½Π½ΡŽ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΡŒ, Π±Ρ–Π»ΡŒΡˆ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π±ΡƒΡ„Π΅Ρ€Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Ρ‡ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ зарядТСних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, які Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°ΡŽΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²ΠΎΠ²Ρ– Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΡ— ємності Ρ‚Π° Ρ–ΠΎΠ½Π½ΠΎΡ— сили Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² Ρ– Ρ€ΠΎΠ·ΡˆΠΈΡ€ΡŽΡŽΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΉ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ сСнсорів. Для створСння ΠΌΡ–Π½Ρ–Π°Ρ‚ΡŽΡ€Π½ΠΈΡ… імуносСнсорів Π±ΡƒΠ»ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Ρ‚Π°ΠΊΡ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ: Π°) використання ΠΏΠΎΠ»Ρ–Π°Π½Ρ–Π»Ρ–Π½Ρƒ як Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΎΡ— ΠΌΡ–Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ Π²ΠΈΠ· Π½Π°Ρ‡Π΅ ΠΏΠ½Ρ– Π°Π½Ρ‚ΠΈΡ‚Ρ–Π» Ρƒ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ Ρ–ΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»Ρ–Π·Ρ–: Π±) створСння Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… структур Π· ΠΏΠ»Ρ–Π²ΠΊΠ°ΠΌΠΈ Ρ„Ρ‚Π°Π»ΠΎΡ†Ρ–Π°Π½Ρ–Π½Ρƒ; Π²) використання Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΈΡ… сополімСрних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±Π³ΠΎΠ²ΠΎΡ€Π΅Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π²Π°Π³ΠΈ Ρ‚Π° Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΡ… ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів. Подальша комСрціалізація Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² ΠΏΠΎΠ²'язана Π· ΠΏΠΎΡˆΡƒΠΊΠΎΠΌ ΡˆΠ»ΡΡ…Ρ–Π² стабілізації Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ‚Π° суміщСння Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Ρ–Π²ΠΊΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ Π· нанСсСнням ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρƒ Ρ”Π΄ΠΈΠ½ΠΎΠΌΡƒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»Ρ–.ΠžΠ±Π·ΠΎΡ€ посвящСн Π°Π½Π°Π»ΠΈΠ·Ρƒ собствСнных Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΊΠΎΠ»ΠΎ 20 кондуктомСтричСских биосСнсоров Π½Π°. основС ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… элСктродов ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ биологичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°) ΠΈ синтСтичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΎ качСствС Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов. Высокая ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, дСшСвизна, простота ΠΈ быстрота опрСдСлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСств Π΄Π΅Π»Π°ΡŽΡ‚ биосСнсоры Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, экологии, сСльском хозяйствС ΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² нСспСцифичСскоС влияниС Ρ„ΠΎΠ½ΠΎΠ²Ρ‹Ρ… элСктролитов ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ благодаря использованию Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Ρ… растворов, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ заряТСнных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰ΠΈΡ… влияниС Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΠΉ Смкости ΠΈ ΠΈΠΎΠ½Π½ΠΎΠΉ силы растворов ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‰ΠΈΡ… динамичСский Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Ρ‹ сСнсоров. Для создания ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹Ρ… иммуносСнсоров ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹: Π°) использованиС ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΊΠ°ΠΊ элСктропроводящСй ΠΌΠ΅Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π² ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»ΠΈΠ·Π΅; Π±) созданиС многослойных структур с ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ Π½Π° основС Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π°; Π²) использованиС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρ‹Ρ… со ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½Ρ‹ прСимущСства ΠΈ нСдостатки Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… кондуктомСтричСских биосСнсоров. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ коммСрциализация, Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² связана с поиском ΠΏΡƒΡ‚Π΅ΠΉ стабилизации Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΈ совмСщСния, Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ с нанСсСниСм ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ тСхнологичСском Ρ†ΠΈΠΊΠ»Π΅

    Capillary electrophoresis coupled to biosensor detection.

    No full text

    Towards the development of an integrated CE/optical biosensor.

    No full text
    Extending the previous preliminary study on the construction of a capillary electrophoresis (CE)/sensor for the detection of reducing analytes, we focus the interest on the simultaneous detection of redox active species, which are important indicators of the oxidative damage in tissues, of food preservation, and of pollution. The CE/sensor was built by modifying the detector-portion of the capillary with the redox-sensitive polymer polyaniline (PANI). The analyte is detected by monitoring the changes in optical absorption of the PANI film. The CE/sensor was tested, with good results, with ascorbic acid, glutathione (GSH), as well as with compounds with very close similarity (ascorbic and isoascorbic acid). The kinetics of oxidation and reduction of PANI were evaluated. Further a PANI/CE-biological sensor was developed by coupling an enzyme, glucose oxidase (GOD), to the PANI-modified portion of the capillary. The stability of the immobilized GOD and the sensitivity of the CE/biosensor were studied, by using glucose as test analyte in concentrations within the physiological range. The results indicate that the CE/biosensor had good stability (more than 75% of original activity retained after 30 operational days), manufacturing reproducibility and a sensing range convenient for monitoring physiological glucose (1-24 mm)

    Development of an integrated CE/sensor for L-ascorbic acid detection.

    No full text
    A CE/biosensor for measuring ascorbic acid was developed by coupling a polyaniline optical sensor and capillary electrophoresis (CE). The capillary column was partially modified with a thin film of polyaniline redox sensitive material. Ascorbic acid was detected by monitoring the changes in optical absorbance occurring to the polyaniline film upon the reduction reaction. The sensor response (change in optical absorbance at 650 nm) is proportional to the concentration of ascorbic acid over a range of 2.5-250 mg/L and the response range has shown a clear dependence on the characteristics of the polymerized film. High specificity and sensitivity of the present method, low sample consumption, short times of response (ca. 2 min) and the reproducibility of the results demonstrate that the CE/polyaniline-sensor could be further employed in the study of the relation between the content of L-ascorbic acid in body fluids and clinical parameters, e.g., cell ageing

    Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine

    No full text
    A voltammetric sensor for (βˆ’)-ephedrine has been prepared by a novel approach based on immobilisation of an imprinted polymer for ephedrine (MIPE) in an electrosynthesised polypyrrole (PPY) film. Composite films were grown potentiostatically at 1.0V vs. Pt (QRE) on a glassy carbon electrode using an unconventional β€œupside-down” (UD) geometry for the three-electrode cell. As a consequence, a high MIP loading was obtained, as revealed by SEM. The sensor response was evaluated, after overoxidation of PPY matrix, by cyclic voltammetry after pre-concentration in a buffered solution of analyte in 0.5–3mM concentration range. An ephedrine peak at β‰ˆ0.9V increasing with concentration and saturating at high concentrations was evident. PPY-modified electrode showed a response, which was distinctly lower than the MIP response for the same concentration of the template. The effect of potential interferences including compounds usually found in human fluids (ascorbic acid, uric acid, urea, glucose, sorbitol, glycine, dopamine) was examined

    Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element

    No full text
    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of gmolecular wires h assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N \u152- diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 \u192\ucaM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (e3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics

    Synthesis of biologically active molecules by imprinting polymerisation

    No full text
    Highly cross-linked molecularly imprinted polymers (MIPs) are synthetic materials with properties mimicking those of natural receptors. Here we describe an ability of MIP nanoparticles to manifest biological activity. Molecularly imprinted polymers were synthesised by co-polymerisation of urocanic acid, N,N’-bisacryloyl piperazine in the presence of herbicide binding D1 protein, ground and separated from the template by washing and ultrafiltration. It was demonstrated that MIP nanoparticles retained affinity to the template. Moreover, imprinted polymers were able to activate chloroplast photosystem II in in vitro experiments. This provides the first example of the use of imprinted polymers for the attenuation of a biological system and opens new possibilities for their application in pharmacology, biotechnology and medicine.ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ (МИП) прСдстав­ Π»ΡΡŽΡ‚ собой сСтчатыС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ сшива­ ния, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ биологичСскиС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ продСмонстрирована биологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Β­Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… наночастиц. МИП ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ вслСдствиС сополимСризации ΡƒΡ€ΠΎΠΊΠ°Π½ΠΎΠ²ΠΎΠΉ кислоты ΠΈ N,N'-бисакрилоил ΠΏΠΈΠΏΠ΅Ρ€Π°Π·ΠΈΠ½Π° Π² присутствии Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π±Π΅Π»ΠΊΠ° Π”1 ΠΊΠ°ΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹. Π”Π°Π»Π΅Π΅ ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π°Π»ΠΈ ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ выдСляли Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Β­Π½Ρ‹Ρ… наночастиц. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ частицы ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΌ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ способно­ ΡΡ‚ΡŒΡŽ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ фотосистСму II хлоропластов Π² экспСри­мСнтах in vitro. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ свойства ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… наночастиц ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠ΅ пСрспСктивы ΠΈΡ… использова­ ния Π² Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅.ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΎΠ²Π°Π½Ρ– ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈ (ΠœΠ†ΠŸ) Ρ” сітчастими ΠΏΠΎΒ­ Π»Ρ–ΠΌΠ΅Ρ€Π°ΠΌΠΈ Π· високим ступСнСм зиіивання, які Ρ–ΠΌΡ–Ρ‚ΡƒΡŽΡ‚ΡŒ Π±Ρ–ΠΎΒ­Π»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΈ. Π’ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π²ΠΏΠ΅Ρ€ΡˆΠ΅ продСмонстровано Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок. ΠœΠ†ΠŸ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ внаслідок співполімСризації ΡƒΡ€ΠΎΠΊΠ°Π½ΠΎΠ²ΠΎΡ— кислоти Ρ‚Π° NyN'-бісакрилоїлпіпСразину Π·Π° присутності Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄-Π·Π²'ΡΠ·ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Ρ–Π»ΠΊΠ° Π”1 як ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ. Π”Π°Π»Ρ– ΠΉΠΎΠ³ΠΎ ΠΏΠΎΠ΄Β­ Ρ€Ρ–Π±Π½ΡŽΠ²Π°Π»ΠΈ Ρ– Π·Π° допомогою ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–Ρ— виділяли Ρ„Ρ€Π°ΠΊΡ†Ρ–ΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок. Показано, Ρ‰ΠΎ Ρ‚Π°ΠΊΡ– час­ Ρ‚ΠΈΠ½ΠΊΠΈ ΠΌΠ°Π»ΠΈ Π°Ρ„Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», Π° Ρ‚Π°ΠΊΠΎΠΆ Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²ΡƒΠ²Π°Ρ‚ΠΈ фотосистСму II хлоропластів Π² СкспС­римСнтах in vitro. ΠŸΠΎΠ΄Ρ–Π±Π½Ρ– властивості ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… наночастинок Π²Ρ–Π΄ΠΊΡ€ΠΈΠ²Π°ΡŽΡ‚ΡŒ ΡˆΠΈΡ€ΠΎΠΊΡ– пСрспСктиві Ρ—Ρ…Π½ΡŒΠΎΠ³ΠΎ викори­стання Π² Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ—, Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— Ρ‚Π° ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ–
    corecore