254 research outputs found

    The merits and limitations of local impact ionization theory

    Get PDF
    Multiplication measurements on GaAs p+-i-n+s with i-region thicknesses, w, between 1 μm and 0.025 μm and Monte Carlo (MC) calculations of the avalanche process are used to investigate the applicability of the local ionization theory. The local expressions for multiplication are able to predict the measured values surprisingly well in p+-i-n+s with i-region thicknesses, w, as thin as 0.2 μm before the effect of dead-space, where carriers have insufficient energy to ionize, causes significant errors. Moreover, only a very simple correction to the local expressions is needed to predict the multiplication accurately where the field varies rapidly in abrupt one-sided p+-n junctions doped up to 1018 cm-3. However, MC modeling also shows that complex dead-space effects cause the local ionization coefficients to be increasingly unrepresentative of the position dependent values in the device as w is reduced below 1 μm. The success of the local model in predicting multiplication is therefore attributed to the dead-space information already being contained within the experimentally determined values of local coefficients. It is suggested that these should therefore be thought of as effective coefficients which, despite the presence of dead-space effects, can be still be used with the existing local theory for efficiently quantifying multiplication and breakdown voltages

    Avalanche noise characteristics of thin GaAs structures with distributed carrier generation

    Get PDF
    It is known that both pure electron and pure hole injection into thin GaAs multiplication regions gives rise to avalanche multiplication with noise lower than predicted by the local noise model. In this paper, it is shown that the noise from multiplication initiated by carriers generated throughout a 0.1 μm avalanche region is also lower than predicted by the local model but higher than that obtained with pure injection of either carrier type. This behavior is due to the effects of nonlocal ionization brought about by the dead space; the minimum distance a carrier has to travel in the electric field to initiate an ionization even

    Amplification of evanescent waves in a lossy left-handed material slab

    Full text link
    We carry out finite-difference time-domain (FDTD) simulations, with a specially-designed boundary condition, on pure evanescent waves interacting with a lossy left-handed material (LHM) slab. Our results provide the first full-wave numerical evidence for the amplification of evanescent waves inside a LHM slab of finite absorption. The amplification is due to the interactions between the evanescent waves and the coupled surface polaritons at the two surfaces of the LHM slab and the physical process can be described by a simple model.Comment: 4 pages, 2 figure

    Signatures of Electronic Nematic Phase at Isotropic-Nematic Phase Transition

    Full text link
    The electronic nematic phase occurs when the point-group symmetry of the lattice structure is broken, due to electron-electron interactions. We study a model for the nematic phase on a square lattice with emphasis on the phase transition between isotropic and nematic phases within mean field theory. We find the transition to be first order, with dramatic changes in the Fermi surface topology accompanying the transition. Furthermore, we study the conductivity tensor and Hall constant as probes of the nematic phase and its transition. The relevance of our findings to Hall resistivity experiments in the high-TcT_c cuprates is discussed.Comment: 5 pages, 3 figure

    Free-Standing Hierarchically Porous Silica Nanoparticle Superstructures: Bridging the Nano- to Microscale for Tailorable Delivery of Small and Large Therapeutics

    Get PDF
    Nanoscale colloidal self-assembly is an exciting approach to yield superstructures with properties distinct from those of individual nanoparticles. However, the bottom-up self-assembly of 3D nanoparticle superstructures typically requires extensive chemical functionalization, harsh conditions, and a long preparation time, which are undesirable for biomedical applications. Here, we report the directional freezing of porous silica nanoparticles (PSiNPs) as a simple and versatile technique to create anisotropic 3D superstructures with hierarchical porosity afforded by microporous PSiNPs and newly generated meso- and macropores between the PSiNPs. By varying the PSiNP building block size, the interparticle pore sizes can be readily tuned. The newly created hierarchical pores greatly augment the loading of a small molecule-anticancer drug, doxorubicin (Dox), and a large macromolecule, lysozyme (Lyz). Importantly, Dox loading into both the micro- and meso/macropores of the nanoparticle assemblies not only gave a pore size-dependent drug release but also significantly extended the drug release to 25 days compared to a much shorter 7 or 11 day drug release from Dox loaded into either the micro- or meso/macropores only. Moreover, a unique temporal drug release profile, with a higher and faster release of Lyz from the larger interparticle macropores than Dox from the smaller PSiNP micropores, was observed. Finally, the formulation of the Dox-loaded superstructures within a composite hydrogel induces prolonged growth inhibition in a 3D spheroid model of pancreatic ductal adenocarcinoma. This study presents a facile modular approach for the rapid assembly of drug-loaded superstructures in fully aqueous environments and demonstrates their potential as highly tailorable and sustained delivery systems for diverse therapeutics

    Investigation of the applicability of TiO2, BiVO4, and WO3 nanomaterials for advanced photocatalytic membranes used for oil-in-water emulsion separation

    Get PDF
    In the present study, a commercial TiO2, several BiVO(4)photocatalysts, a WO(3)nanomaterial, and their composites were used to prepare photocatalytic polyvinylidene fluoride (PVDF) ultrafilter membranes. Their photocatalytic activities and the effects of coatings on the filtration of oil-in-water emulsion (crude oil; c(oil)= 100 mg L-1) were investigated. Fluxes, filtration resistances, purification efficiencies, and fouling resistance abilities-like flux decay ratios (FDRs) and flux recovery ratios (FRRs)-were compared. The solar light-induced photocatalytic decomposition of the foulants was also investigated. WO(3)was used as a composite component to suppress the electron-hole recombination with the goal of achieving higher photocatalytic activity, but the presence of WO(3)was not beneficial concerning the filtration properties. However, the application of TiO2, one of the investigated BiVO(4)photocatalysts, and their composites was also beneficial. In the case of the neat membrane, only 87 L m(-2)h(-1)flux was measured, whereas with the most beneficial BiVO(4)coating, 464 L m(-2)h(-1)flux was achieved. Pure BiVO(4)coating was more beneficial in terms of filtration properties, whereas pure TiO(2)coating proved to be more beneficial concerning the photocatalytic regeneration of the membrane. The TiO2(80%)/BiVO4(20%) composite was estimated to be the most beneficial combination taking into account both the aspects of photocatalytic activity and filtration properties

    Next-to-next-to-leading order prediction for the photon-to-pion transition form factor

    Get PDF
    We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-pion transition form factor. Our approach is based on the predictive power of the conformal operator product expansion, which is valid for a vanishing β\beta-function in the so-called conformal scheme. The Wilson--coefficients appearing in the non-forward kinematics are then entirely determined from those of the polarized deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose different schemes to include explicitly also the conformal symmetry breaking term proportional to the β\beta-function, and discuss numerical predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references added, to appear in Phys. Rev.

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit
    corecore