932 research outputs found

    Self Organization and a Dynamical Transition in Traffic Flow Models

    Get PDF
    A simple model that describes traffic flow in two dimensions is studied. A sharp {\it jamming transition } is found that separates between the low density dynamical phase in which all cars move at maximal speed and the high density jammed phase in which they are all stuck. Self organization effects in both phases are studied and discussed.Comment: 6 pages, 4 figure

    The Role of Friction in Compaction and Segregation of Granular Materials

    Full text link
    We investigate the role of friction in compaction and segregation of granular materials by combining Edwards' thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical calculations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures of grains differing in frictional properties are found to segregate at high compactivities, in contrary to granular mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation vs. friction coefficients of the two species is generated. Finally, the characteristics of segregation are related directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    A low power photoemission source for electrons on liquid helium

    Full text link
    Electrons on the surface of liquid helium are a widely studied system that may also provide a promising method to implement a quantum computer. One experimental challenge in these studies is to generate electrons on the helium surface in a reliable manner without heating the cryo-system. An electron source relying on photoemission from a zinc film has been previously described using a high power continuous light source that heated the low temperature system. This work has been reproduced more compactly by using a low power pulsed lamp that avoids any heating. About 5e3 electrons are collected on 1 cm^2 of helium surface for every pulse of light. A time-resolved experiment suggests that electrons are either emitted over or tunnel through the 1eV barrier formed by the thin superfluid helium film on the zinc surface. No evidence of trapping or bubble formation is seen.Comment: 9 pages, 3 figures, submitted to J. Low Temp. Phy

    A Unified Model for Two Localisation Problems: Electron States in Spin-Degenerate Landau Levels, and in a Random Magnetic Field

    Full text link
    A single model is presented which represents both of the two apparently unrelated localisation problems of the title. The phase diagram of this model is examined using scaling ideas and numerical simulations. It is argued that the localisation length in a spin-degenerate Landau level diverges at two distinct energies, with the same critical behaviour as in a spin-split Landau level, and that all states of a charged particle moving in two dimensions, in a random magnetic field with zero average, are localised.Comment: 7 pages (RevTeX 3.0) plus 4 postscript figure

    О неустойчивости решений динамических уравнений на временной шкале

    Get PDF
    В роботi наведено результати аналiзу нестiйкостi динамiчних рiвнянь на часовiй шкалi. Застосовнiсть отриманого результату iлюструється на прикладi системи другого порядку.We present new results on the instability for dynamic equations on time scales. To demonstrate the applicability, we use some examples of dynamic equations of the second order

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.

    Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function

    Get PDF
    Enteropathogenic Escherichia coli (EPEC) infection of the human small intestine induces severe watery diarrhoea linked to a rather weak inflammatory response despite EPEC's in vivo capacity to disrupt epithelial barrier function. Here, we demonstrate that EPEC flagellin triggers the secretion of the pro-inflammatory cytokine, interleukin (IL)-8, from small (Caco-2) and large (T84) intestinal epithelia model systems. Interestingly, IL-8 secretion required basolateral infection of T84 cells implying that flagellin must penetrate the epithelial barrier. In contrast, apical infection of Caco-2 cells induced IL-8 secretion but less potently than basolateral infections. Importantly, infection of Caco-2, but not T84 cells rapidly inhibited IL-8 secretion by a mechanism dependent on the delivery of effectors through a translocation system encoded on the locus of enterocyte effacement (LEE). Moreover, EPEC prevents the phosphorylation-associated activation of multiple kinase pathways regulating IL-8 gene transcription by a mechanism apparently independent of LEE-encoded effectors and four non-LEE-encoded effectors. Crucially, our studies reveal that EPEC inhibits the capacity of the cells to secrete IL-8 in response to bacterial antigens and inflammatory cytokines prior to disrupting barrier function by a distinct mechanism. Thus, these findings also lend themselves to a plausible mechanism to explain the absence of a strong inflammatory response in EPEC-infected humans

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    corecore