121 research outputs found
Informing the design of ‘lifestyle monitoring’ technology for the detection of health deterioration in long-term conditions: a qualitative study of people living with heart failure
Background
Health technologies are being developed to help people living at home manage long-term conditions. One such technology is “lifestyle monitoring” (LM) a telecare technology based on the idea that home activities may be monitored unobtrusively via sensors to give an indication of changes in health-state. However questions remain about LM technology: how home activities change when participants experience differing health-states; and how sensors might capture clinically important changes to inform timely interventions.
Objective
This paper reports the findings of a study aiming to identify changes in activity indicative of important changes in health in people with long-term conditions, particularly those changes indicative of exacerbation - by exploring the relationship between home activities and health amongst people with heart failure (HF). We aim to add to the knowledge base informing the development of home monitoring technologies designed to detect health deterioration in order to facilitate early intervention and avoid hospital admissions.
Method
This qualitative study utilised semi-structured interviews to explore everyday activities undertaken during the three health-states of HF: normal days, bad days, and exacerbations. Potential recruits were identified by specialist nurses and from attendees at a HF support group. The sample was purposively selected to include a range of experience of living with HF.
Results
The sample comprised twenty people with HF aged fifty years and older, and eleven spouses/partners of the individuals with HF. All resided in Northern England. Participant accounts revealed that home activities are in-part shaped by the degree of intrusion from HF symptoms. During an exacerbation participants undertook activities specifically to ease symptoms, and detailed activity changes were identified. Everyday activity was also influenced by a range of factors other than health.
Conclusion
The study highlights the importance of careful development of lifestyle monitoring technology if it is to identify changes in activity that occur during clinically important changes in health. These detailed activity changes need to be considered by developers of LM sensors, platforms, and algorithms intended to detect early signs of deterioration. Results suggest that for LM to move forward sensor set-up should be personalised both to individual circumstances and targeted at individual health conditions. LM needs to take account of the uncertainties that arise from placing technology within the home, in order to inform sensor set-up and data interpretation. This more targeted approach is likely to yield more clinically meaningful data, and in addition addresses some of the ethical issues of remote monitoring
Towards a New Standard Model for Black Hole Accretion
We briefly review recent developments in black hole accretion disk theory,
emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in
transporting angular momentum. The apparent universality of accretion-related
outflow phenomena is a strong indicator that large-scale MHD torques facilitate
vertical transport of angular momentum. This leads to an enhanced overall rate
of angular momentum transport and allows accretion of matter to proceed at an
interesting rate. Furthermore, we argue that when vertical transport is
important, the radial structure of the accretion disk is modified at small
radii and this affects the disk emission spectrum. We present a simple model
demonstrating how energetic, magnetically-driven outflows modify the emergent
disk emission spectrum with respect to that predicted by standard accretion
disk theory. A comparison of the predicted spectra against observations of
quasar spectral energy distributions suggests that mass accretion rates
inferred using the standard disk model may severely underestimate their true
values.Comment: To appear in the Fifth Stromlo Symposium Proceedings special issue of
ApS
Evolution of Magnetic Fields around a Kerr Black Hole
The evolution of magnetic fields frozen to a perfectly conducting plasma
fluid around a Kerr black hole is investigated. We focus on the plunging region
between the black hole horizon and the marginally stable circular orbit in the
equatorial plane. Adopting the kinematic approximation where the dynamical
effects of magnetic fields are ignored, we exactly solve Maxwell's equations
with the assumptions that the geodesic motion of the fluid is stationary and
axisymmetric, the magnetic field has only radial and azimuthal components and
depends only on time and radial coordinates. We show that the stationary state
of the magnetic field in the plunging region is uniquely determined by the
boundary conditions at the marginally stable circular orbit. If the magnetic
field at the marginally stable circular orbit is in a stationary state, the
magnetic field in the plunging region will quickly settle into a stationary
state if it is not so initially, in a time determined by the dynamical time
scale. The radial component of the magnetic field at the marginally stable
circular orbit is more important than the toroidal component in determining the
structure and evolution of the magnetic field in the plunging region. Even if
at the marginally stable circular orbit the toroidal component is zero, in the
plunging region a toroidal component is quickly generated from the radial
component by the shear motion of the fluid. Finally, we show that the dynamical
effects of magnetic fields are unimportant in the plunging region if they are
negligible on the marginally stable circular orbit. This supports the
``no-torque inner boundary condition'' of thin disks, contrary to the claim in
the recent literature.Comment: 48 pages, including 13 figures; version with full resolution Figs at
http://cfa-www.harvard.edu/~lli/astro-ph/mag_evol.p
Resistive and magnetized accretion flows with convection
We considered the effects of convection on the radiatively inefficient
accretion flows (RIAF) in the presence of resistivity and toroidal magnetic
field. We discussed the effects of convection on transports of angular momentum
and energy. We established two cases for the resistive and magnetized RIAFs
with convection: assuming the convection parameter as a free parameter and
using mixing-length theory to calculate convection parameter. A self-similar
method was used to solve the integrated equations that govern the behavior of
the presented model. The solutions showed that the accretion and rotational
velocities decrease by adding the convection parameter, while the sound speed
increases. Moreover, by using mixing-length theory to calculate convection
parameter, we found that the convection can be important in RIAFs with magnetic
field and resistivity.Comment: 7 pages, 3 figures, accepted by Ap&S
Bondian frames to couple matter with radiation
A study is presented for the non linear evolution of a self gravitating
distribution of matter coupled to a massless scalar field. The characteristic
formulation for numerical relativity is used to follow the evolution by a
sequence of light cones open to the future. Bondian frames are used to endow
physical meaning to the matter variables and to the massless scalar field.
Asymptotic approaches to the origin and to infinity are achieved; at the
boundary surface interior and exterior solutions are matched guaranteeing the
Darmois--Lichnerowicz conditions. To show how the scheme works some numerical
models are discussed. We exemplify evolving scalar waves on the following fixed
backgrounds: A) an atmosphere between the boundary surface of an incompressible
mixtured fluid and infinity; B) a polytropic distribution matched to a
Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The
conservation of energy, the Newman--Penrose constant preservation and other
expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio
Radial and vertical angular momentum transport in protostellar discs
Angular momentum in protostellar discs can be transported either radially,
through turbulence induced by the magnetorotational instability (MRI), or
vertically, through the torque exerted by a large-scale magnetic field. We
present a model of steady-state discs where these two mechanisms operate at the
same radius and derive approximate criteria for their occurrence in an
ambipolar diffusion dominated disc. We obtain "weak field'' solutions - which
we associate with the MRI channel modes in a stratified disc - and transform
them into accretion solutions with predominantly radial angular-momentum
transport by implementing a turbulent-stress prescription based on published
results of numerical simulations. We also analyze "intermediate field
strength'' solutions in which both radial and vertical transport operate at the
same radial location. Our results suggest, however, that this overlap is
unlikely to occur in real discs.Comment: 5 pages, 2 figures, 1 table, aastex.cls. Accepted for publication in
Astrophysics & Space Scienc
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
General Overview of Black Hole Accretion Theory
I provide a broad overview of the basic theoretical paradigms of black hole
accretion flows. Models that make contact with observations continue to be
mostly based on the four decade old alpha stress prescription of Shakura &
Sunyaev (1973), and I discuss the properties of both radiatively efficient and
inefficient models, including their local properties, their expected stability
to secular perturbations, and how they might be tied together in global flow
geometries. The alpha stress is a prescription for turbulence, for which the
only existing plausible candidate is that which develops from the
magnetorotational instability (MRI). I therefore also review what is currently
known about the local properties of such turbulence, and the physical issues
that have been elucidated and that remain uncertain that are relevant for the
various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the
Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes
(Springer Publisher
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
- …