129 research outputs found

    Consideration of the listener in the assessment and treatment of dysarthria

    Get PDF
    Traditionally, speech production deficits have been the focus of clinical practice and research in dysarthria. However, recent research has begun to examine the role of the listener in communication interaction. This article provides an overview of perceptual processing theory relevant to dysarthria. In addition, it discusses the relationship of current theoretical models of speech perception to the assessment and treatment of dysarthria. Finally, it provides insight into how this information may inform current clinical practices and future research in the field

    A comparison of DA white dwarf temperatures and gravities from Lyman and Balmer line studies

    Get PDF
    We present measurements of the effective temperatures and surface gravities for a sample of hot DA white dwarfs, using the Lyman line data available from the HUT, ORFEUS and FUSE far-UV space missions. Comparing the results with those from the standard Balmer line technique, we find that there is a general good overall agreement between the two methods. However, significant differences are found for a number of stars, but not always of a consistent nature in that sometimes the Balmer temperature exceeds that derived from the Lyman lines and in other instances is lower. We conclude that, with the latest model atmosphere calculations, these discrepancies probably do not arise from an inadequate theoretical treatment of the Lyman lines but rather from systematic effects in the observation and data reduction processes, which dominate the statistical errors in these spectra. If these systematic data reduction effects can be adequately controlled, the Lyman line temperature and gravity measurements are consistent with those obtained from the Balmer lines when allowance is made for reasonable observational uncertainties.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society 14 pages, 13 figure

    Spectroscopic and photometric analysis of HS 1136+6646: A hot young DAO+K7V post-common- envelope, pre-cataclysmic variable binary

    Get PDF
    Copyright © 2004 IOP Publishing / American Astronomical SocietyExtensive photometric and spectroscopic observations have been obtained for HS 1136+6646. The observations reveal a newly formed post–common-envelope binary system containing a hot ~DAO.5 primary and a highly irradiated secondary. HS 1136+6646 is the most extreme example yet of a class of short-period hot H-rich white dwarfs with K–M companion systems such as V471 Tau and Feige 24. HS 1136+6646 is a double-line spectroscopic binary showing emission lines of H I, He II, C II, Ca II, and Mg II, due in part to irradiation of the K7 V secondary by the hot white dwarf. Echelle spectra reveal the hydrogen emission lines to be double-peaked with widths of ~200 km s-1, raising the possibility that emission from an optically thin disk may also contribute. The emission lines are observed to disappear near the inferior conjunction. An orbital period of 0.83607 ± 0.00003 days has been determined through the phasing of radial velocities, emission-line equivalent widths, and photometric measurements spanning a range of 24 months. Radial velocity measurements yield an amplitude of KWD = 69 ± 2 km s-1 for the white dwarf and KK7V = 115 ± 1 km s-1 for the secondary star. In addition to orbital variations, photometric measurements have also revealed a low-amplitude modulation with a period of 113.13 minutes and a semiamplitude of 0.0093 mag. These short-period modulations are possibly associated with the rotation of the white dwarf. From fits of the Balmer line profiles, the white dwarf is estimated to have an effective temperature and gravity of ~70,000 K and log g ~ 7.75, respectively. However, this optically derived temperature is difficult to reconcile with the far-UV spectrum of the Lyman line region. Far Ultraviolet Spectroscopic Explorer spectra show the presence of O VI absorption lines and a spectral energy distribution whose slope persists nearly to the Lyman limit. The extremely high temperature of the white dwarf, from both optical and UV measurements, indicates that the binary system is one of the earliest post–common-envelope objects known, having an age around 7.7 × 105 yr. Although the spectrum of the secondary star is best represented by a K7 V star, indications are that the star may be overly luminous for its mass.NASAParticle and Astronomy Research Council, UKNS

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∌5×1015 M⊙\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Should science educators deal with the science/religion issue?

    Get PDF
    I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering and the writings of Richard Dawkins. Finally, I consider some of the pedagogical issues that would need to be considered if the science/religion issue is to be addressed in the classroom. I conclude that there are increasing arguments in favour of science educators teaching about the science/religion issue. The principal reason for this is to help students better to learn science. However, such teaching makes greater demands on science educators than has generally been the case. Certain of these demands are identified and some specific suggestions are made as to how a science educator might deal with the science/religion issue. © 2008 Taylor & Francis

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Experimental progress in positronium laser physics

    Get PDF

    A consciousness of their own? Class, 'race' and gender in the lives of white working-class women in post-war Birmingham (1945-1990)

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN042273 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • 

    corecore