17 research outputs found

    Substrate effects and evaluation of elastic moduli of components of inhomogeneous films by nanoindentation

    No full text
    Depth-sensing nanoindentation (DSNI) is a very popular technique that is used for evaluation of mechanical properties of both homogeneous thin films and bulk material samples. Recently it has been proposed by the authors to apply the DSNI to components of highly inhomogeneous materials that could contain pores and cracks. The extended techniques assume that the DSNI is applied to very thin films (the thickness is about 10–20 μm) of the tested inhomogeneous material glued to a transparent rigid substrate. The combination of DSNI and transmitted light microscopy allows us to visualize the regions of tested components. Because we study not a bulk material sample but rather a thin films glued to the substrate, the approximating functions have to be used to extract the real elastic modulus of the tested component. We present the results of evaluation of elastic moduli of coal samples at varying depth of maximal indentation using seven approximating functions. Comparing the experimental values with the results of approximations and calculating statistical characteristics such as the residual sum of squares and the coefficient of determination, it was found that the most appropriate are the exponential decay function and a function based on power-law approximation

    Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing

    No full text
    The outbursts of coal and gas is one of the main coal mining hazards, therefore, for the coal mining industry, studying of mechanisms and predisposing factors for these events is of the utmost importance. It is demonstrated here that the micro/nano scale structure of coal samples is one of predisposing factors for the coal propensity to outburst. The same is related to the coal propensity to crushing and formation of fine powder (dust). The results of micro/nanoindentation experimental studies of heterogeneity of spatial distribution brittleness and mechanical properties of coals at micro/nano scales are presented for samples taken from both hazardous (outburstprone) and non-hazardous strata (packs) of the same coal seam. The experiments were performed on both ‘as received’ coal samples and ones after sorption treatment by dimethylformamide. The latter treatment allowed to partially discharge the internal stresses that exist in the coal samples. The mapping the indentation results enabled us to reveal the actual heterogeneity of distribution of mechanical properties at nanoscale. It has been confirmed that hardness of coals at microand nanoscale is not an informative parameter for characterization of their propensity to destruction. It was established that higher heterogeneity of stiffness could be a reason to formation of multiple cracks at coals after microhardness tests. The part of energy spent for the irreversible changes in the material structure within the total work of indentation is the parameter indicating clearly the propensity of coal samples to crushing and formation of fine powder (dust). Coal samples from the non-hazardous packs have a low ratio of inclusions prone to irreversible changes of the structure and those prone to keeping their structural integrity, while the ratio is about a unity for samples from the hazardous packs. Thus, there is a natural distinction of the mechanical properties between two coal samples having similar origin and rank but different in their proneness to instantaneous outbursts
    corecore