13 research outputs found

    The Effect of Liposome Encapsulation on the Pharmacokinetics of Recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) Therapy after Local Delivery to a Guinea Pig Asthma Model

    Get PDF
    Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo

    Early-stage development of novel cyclodextrin-sirna nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells

    No full text
    Background: Successful delivery of small interfering RNA (siRNA) to the lungs remains hampered by poor intracellular delivery, vector-mediated cytotoxicity, and an inability to withstand nebulization. Recently, a novel cyclodextrin (CD), SC12CDClickpropylamine, consisting of distinct lipophilic and cationic subunits, has been shown to transfect a number of cell types. However, the suitability of this vector for pulmonary siRNA delivery has not been assessed to date. To address this, a series of high-content analysis (HCA) and postnebulization assays were devised to determine the potential for CD-siRNA delivery to the lungs. Methods: SC12CDClickpropylamine-siRNA mass ratios (MRs) were examined for size and zeta potential. In-depth analysis of nanocomplex uptake and toxicity in Calu-3 bronchial epithelial cells was examined using IN Cell((R)) HCA assays. Nebulized SC12CDClickpropylamine nanocomplexes were assessed for volumetric median diameter (VMD) and fine particle fraction (FPF) and compared with saline controls. Finally, postnebulization stability was determined by comparing luciferase knockdown elicited by SC12CDClickpropylamine nanocomplexes before and after nebulization. Results: SC12CDClickpropylamine-siRNA complexation formed cationic nanocomplexes of 200nm in size depending on the medium and led to significantly higher levels of siRNA associated with Calu-3 cells compared with RNAiFect-siRNA-treated cells at all MRs (p<0.001, n=3x4), with evidence of toxicity only at MRs 50-100. Nebulization of SC12CDClickpropylamine nanocomplexes using the Aeroneb((R)) Pro resulted in VMDs of approximate to 4m and FPFs of approximate to 57% at all MRs. SC12CDClickpropylamine-siRNA-mediated luciferase knockdown was found to be 39.83.6% at MR=20 before and 35.6 +/- 4.55% after nebulization, comparable to results observed using unnebulized commercial transfection reagent, RNAiFect. Conclusions: SC12CDClickpropylamine nanocomplexes can be effectively nebulized for pulmonary delivery of siRNA using Aeroneb technology to mediate knockdown in airway cells. To the best of our knowledge, this is the first study examining the suitability of SC12CDClickpropylamine-siRNA nanocomplexes for pulmonary delivery. Furthermore, this work provides an integrated nanomedicine-device combination for future in vitro and in vivo preclinical and clinical studies of inhaled siRNA therapeutics

    Reporting guidelines for human microbiome research: the STORMS checklist

    Full text link
    The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results
    corecore