17,262 research outputs found
Recommended from our members
Analysis of rolling bearing power loss models for twin screw oil injected compressor
The mechanical losses inside a screw compressor limit the performance of the compressor in terms of efficiency. These losses arise due to relative motion between elements inside the screw compressor. The estimation of mechanical losses predicted in the literature is around 10-15% of the total shaft power. One of the elements which contribute significantly to these losses is rolling element bearings. There are numerous mathematical models available which predict power losses in the rolling bearings. The objective of this paper is to study different models to predict power loss for rolling bearings and to predict the power losses for the bearings used for oil injected, twin screw compressor. A comparison between different power loss models for different operating conditions of compressor is also presented in this paper and results of analysis are compared with available experimental observations. The analysis helps to determine suitable power loss model for different operating conditions and more realistic predictions of the power losses. This allows designers for more accurate estimation of the performance of screw compressors
2D and 3D cubic monocrystalline and polycrystalline materials: their stability and mechanical properties
We consider 2- and 3-dimensional cubic monocrystalline and polycrystalline
materials. Expressions for Young's and shear moduli and Poisson's ratio are
expressed in terms of eigenvalues of the stiffness tensor. Such a form is well
suited for studying properties of these mechanical characteristics on sides of
the stability triangles. For crystalline high-symmetry directions lines of
vanishing Poisson's ratio are found. These lines demarcate regions of the
stability triangle into areas of various auxeticity properties. The simplest
model of polycrystalline 2D and 3D cubic materials is considered. In
polycrystalline phases the region of complete auxetics is larger than for
monocrystalline materials.Comment: 9 pages, 3 figures, in proceedings of the Tenth International School
on Theoretical Physics, Symmetry and Structural Properties of Condensed
Matter, Myczkowce 200
Efficiency at maximum power of minimally nonlinear irreversible heat engines
We propose the minimally nonlinear irreversible heat engine as a new general
theoretical model to study the efficiency at the maximum power of heat
engines operating between the hot heat reservoir at the temperature and
the cold one at (). Our model is based on the extended
Onsager relations with a new nonlinear term meaning the power dissipation. In
this model, we show that is bounded from the upper side by a function
of the Carnot efficiency as . We demonstrate the validity of our theory by showing that
the low-dissipation Carnot engine can easily be described by our theory.Comment: 6 pages, 1 figur
String order and hidden topological symmetry in the SO(2n+1) symmetric matrix product states
We have introduced a class of exactly soluble Hamiltonian with either
SO(2n+1) or SU(2) symmetry, whose ground states are the SO(2n+1) symmetric
matrix product states. The hidden topological order in these states can be
fully identified and characterized by a set of nonlocal string order
parameters. The Hamiltonian possesses a hidden
topological symmetry. The breaking of this hidden symmetry leads to
degenerate ground states with disentangled edge states in an open chain system.
Such matrix product states can be regarded as cluster states, applicable to
measurement-based quantum computation.Comment: 5 pages, 1 figur
Efficiency of a Brownian information machine
A Brownian information machine extracts work from a heat bath through a
feedback process that exploits the information acquired in a measurement. For
the paradigmatic case of a particle trapped in a harmonic potential, we
determine how power and efficiency for two variants of such a machine operating
cyclically depend on the cycle time and the precision of the positional
measurements. Controlling only the center of the trap leads to a machine that
has zero efficiency at maximum power whereas additional optimal control of the
stiffness of the trap leads to an efficiency bounded between 1/2, which holds
for maximum power, and 1 reached even for finite cycle time in the limit of
perfect measurements.Comment: 9 pages, 2 figure
Thermoelectric efficiency at maximum power in a quantum dot
We identify the operational conditions for maximum power of a
nanothermoelectric engine consisting of a single quantum level embedded between
two leads at different temperatures and chemical potentials. The corresponding
thermodynamic efficiency agrees with the Curzon-Ahlborn expression up to
quadratic terms in the gradients, supporting the thesis of universality beyond
linear response.Comment: 4 pages, 3 figure
Unified Correlation of In-Plane and Out-of-Plane Creep Constraints with Creep Crack Growth Rate
AbstractIn this paper, the equivalent creep strain distributions ahead of crack tips in different specimens were calculated by extensive finite element analyses, and the creep crack growth (CCG) rates of these specimens were simulated over a wide range of C*. The capability and applicability of the constraint parameter Ac for characterizing both in-plane and out-of-plane creep crack-tip constraints and establishing a unified correlation with CCG rate of a steel were investigated. Base on the parameter Ac, the unified correlation formulas of in-plane and out-of-plane constraints with CCG rate of a steel have been obtained
Comment on: Role of Intermittency in Urban Development: A Model of Large-Scale City Formation
Comment to D.H. Zanette and S.C. Manrubia, Phys. Rev. Lett. 79, 523 (1997).Comment: 1 page no figure
Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models
© The Institution of Engineering and Technology 2015. To satisfy the recent growth of mobile data usage, small cells are recommended to deploy into conventional cellular networks. However, the massive backhaul traffic is a troublesome problem for small cell networks, especial in wireless backhaul transmission links. In this study, backhaul traffic models are first presented considering the Gauss-Markov mobile models of mobile stations in small cell networks. Furthermore, an energy efficiency model of small cell backhaul networks with Gauss-Markov mobile models has been proposed. Numerical results indicate that the energy efficiency of small cell backhaul networks can be optimised by trade-off the number and radius of small cells in cellular networks
- …