27,522 research outputs found

    Metadata Federation with AMGA

    Get PDF

    Quantum fluctuations of Cosmological Perturbations in Generalized Gravity

    Get PDF
    Recently, we presented a unified way of analysing classical cosmological perturbation in generalized gravity theories. In this paper, we derive the perturbation spectrums generated from quantum fluctuations again in unified forms. We consider a situation where an accelerated expansion phase of the early universe is realized in a particular generic phase of the generalized gravity. We take the perturbative semiclassical approximation which treats the perturbed parts of the metric and matter fields as quantum mechanical operators. Our generic results include the conventional power-law and exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure

    Metallic behavior in Si/SiGe 2D electron systems

    Full text link
    We calculate the temperature, density, and parallel magnetic field dependence of low temperature electronic resistivity in 2D high-mobility Si/SiGe quantum structures, assuming the conductivity limiting mechanism to be carrier scattering by screened random charged Coulombic impurity centers. We obtain comprehensive agreement with existing experimental transport data, compellingly establishing that the observed 2D metallic behavior in low-density Si/SiGe systems arises from the peculiar nature of 2D screening of long-range impurity disorder. In particular, our theory correctly predicts the experimentally observed metallic temperature dependence of 2D resistivity in the fully spin-polarized system

    Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes

    Full text link
    We study practically efficient methods for performing combinatorial group testing. We present efficient non-adaptive and two-stage combinatorial group testing algorithms, which identify the at most d items out of a given set of n items that are defective, using fewer tests for all practical set sizes. For example, our two-stage algorithm matches the information theoretic lower bound for the number of tests in a combinatorial group testing regimen.Comment: 18 pages; an abbreviated version of this paper is to appear at the 9th Worksh. Algorithms and Data Structure

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Far-infrared spectroscopy of spin excitations and Dzyaloshinskii-Moriya interactions in a Shastry-Sutherland compound SrCu2_2(BO3_3)$_2

    Full text link
    We have studied spin excitation spectra in the Shastry-Sutherland model compound SrCu2_2(BO3_3)2_2 in magnetic fields using far-infrared Fourier spectroscopy. The transitions from the ground singlet state to the triplet state at 24 cm1^{-1} and to several bound triplet states are induced by the electric field component of the far-infrared light. To explain the light absorption in the spin system we invoke a dynamic Dzyaloshinskii-Moriya (DM) mechanism where light couples to a phonon mode, allowing the DM interaction. Two optical phonons couple light to the singlet to triplet transition in SrCu2_2(BO3_3)2_2. One is aa-polarized and creates an intra-dimer dynamic DM along the c axis. The other is cc-polarized and creates an intra-dimer dynamic DM interaction, it is in the (ab)(ab) plane and perpendicular to the dimer axis. Singlet levels at 21.5 and 28.6 cm1^{-1} anti-cross with the first triplet as is seen in far-infrared spectra. We used a cluster of two dimers with a periodic boundary condition to perform a model calculation with scaled intra- and inter-dimer exchange interactions. Two static DM interactions are sufficient to describe the observed triplet state spectra. The static inter-dimer DM in the c-direction d1=0.7d_1=0.7 cm1^{-1} splits the triplet state sub-levels in zero field [C\'{e}pas et al., Phys. Rev. Lett. \textbf{87}, 167205 (2001)]. The static intra-dimer DM in the (ab)(ab) plane (perpendicular to the dimer axis) d2=1.8d_2=1.8 cm1^{-1}, allowed by the buckling of CuBO3_3 planes, couples the triplet state to the 28.6 cm1^{-1} singlet as is seen from the avoided crossing.Comment: 12 pages with 7 figures, some references correcte

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18μm CMOS processes and it occupies 1189.91 x 1178.43μm2 (include PADs). It can also be validated by low voltage CCII filters

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    Electron-boson spectral density of LiFeAs obtained from optical data

    Full text link
    We analyze existing optical data in the superconducting state of LiFeAs at T=T = 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density I2χ(ω)I^2\chi(\omega) from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an ss-wave superconductor, but does not eliminate the boson structure. We find a robust peak in I2χ(ω)I^2\chi(\omega) centered about ΩR\Omega_R \cong 8.0 meV or 5.3 kBTck_B T_c (with Tc=T_c = 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at T=T = 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure
    corecore