17,578 research outputs found
Charge migration in organic materials: Can propagating charges affect the key physical quantities controlling their motion?
Charge migration is a ubiquitous phenomenon with profound implications
throughout many areas of chemistry, physics, biology and materials science. The
long-term vision of designing functional materials with tailored molecular
scale properties has triggered an increasing quest to identify prototypical
systems where truly molecular conduction pathways play a fundamental role. Such
pathways can be formed due to the molecular organization of various organic
materials and are widely used to discuss electronic properties at the nanometer
scale. Here, we present a computational methodology to study charge propagation
in organic molecular stacks at nano and sub-nanoscales and exploit this
methodology to demonstrate that moving charge carriers strongly affect the
values of the physical quantities controlling their motion. The approach is
also expected to find broad application in the field of charge migration in
soft matter systems.Comment: 18 pages, 6 figures, accepted for publication in the Israel Journal
of Chemistr
Big Data on Decision Making in Energetic Management of Copper Mining
Indexado en: Web of Science; Scopus.It is proposed an analysis of the related variables with the energetic consumption in the process of concentrate of copper; specifically ball mills and SAG. The methodology considers the analysis of great volumes of data, which allows to identify the variables of interest (tonnage, temperature and power) to reach to an improvement plan in the energetic efficiency. The correct processing of the great volumen of data, previous imputation to the null data, not informed and out of range, coming from the milling process of copper, a decision support systems integrated, it allows to obtain clear and on line information for the decision making. As results it is establish that exist correlation between the energetic consumption of the Ball and SAG Mills, regarding the East, West temperature and winding. Nevertheless, it is not observed correlation between the energetic consumption of the Ball Mills and the SAG Mills, regarding to the tonnages of feed of SAG Mill. In consequence, From the experimental design, a similarity of behavior between two groups of different mills was determined in lines process. In addition, it was determined that there is a difference in energy consumption between the mills of the same group. This approach modifies the method presented in [1].(a)http://www.univagora.ro/jour/index.php/ijccc/article/view/2784/106
Conductance of a molecular junction mediated by unconventional metal-induced gap states
The conductance of a molecular junction is commonly determined by either
charge-transfer-doping, where alignment of the Fermi energy to the molecular
levels is achieved, or tunnelling through the tails of molecular resonances
within the highest-occupied and lowest-unoccupied molecular-orbital gap.
Here, we present an alternative mechanism where electron transport is
dominated by electrode surface states. They give rise to metallization of the
molecular bridge and additional, pronounced conductance resonances allowing for
substantial tailoring of its electronic properties via, e.g. a gate voltage.
This is demonstrated in a field-effect geometry of a fullerene-bridge between
two metallic carbon nanotubes.Comment: 7 pages, 5 figures included; to be published in Europhys. Let
Studies of CMB structure at Dec=40. II: Analysis and cosmological interpretation
We present a detailed analysis of the cosmic microwave background structure
in the Tenerife Dec=+40 degrees data. The effect of local atmospheric
contributions on the derived fluctuation amplitude is considered, resulting in
an improved separation of the intrinsic CMB signal from noise. Our analysis
demonstrates the existence of common structure in independent data scans at 15
and 33 GHz. For the case of fluctuations described by a Gaussian
auto-correlation function, a likelihood analysis of our combined results at 15
and 33 GHz implies an intrinsic rms fluctuation level of 48^{+21}_{-15} uK on a
coherence scale of 4 degrees; the equivalent analysis for a
Harrison-Zel'dovitch model gives a power spectrum normalisation of Q_{rms-ps} =
22^{+10}_{-6} uK. The fluctuation amplitude is seen to be consistent at the 68%
confidence level with that reported for the COBE two-year data for primordial
fluctuations described by a power law model with a spectral index in the range
1.0 \le n \le 1.6. This limit favours the large scale CMB anisotropy being
dominated by scalar fluctuations rather than tensor modes from a gravitational
wave background. The large scale Tenerife and COBE results are considered in
conjunction with observational results from medium scale experiments in order
to place improved limits on the fluctuation spectral index; we find n=1.10 +/-
0.10 assuming standard CDM with H_{0}=50 kms^{-1}Mpc^{-1}.Comment: 10 pages LaTeX, including 8 PostScript figures. Accepted for
publication in MNRA
CMB observations with the Jodrell Bank - IAC interferometer at 33 GHz
The paper presents the first results obtained with the Jodrell Bank - IAC
two-element 33 GHz interferometer. The instrument was designed to measure the
level of the Cosmic Microwave Background (CMB) fluctuations at angular scales
of 1 - 2 degrees. The observations analyzed here were taken in a strip of the
sky at Dec = +41 deg with an element separation of 16.7 lambda, which gives a
maximum sensitivity to ~1.6 deg structures on the sky. The data processing and
calibration of the instrument are described. The sensitivity achieved in each
of the two channels is 7 micro K per resolution element. A reconstruction of
the sky at Dec = +41 deg using a maximum entropy method shows the presence of
structure at a high level of significance. A likelihood analysis, assuming a
flat CMB spatial power spectrum, gives a best estimate of the level of CMB
fluctuations of Delta Tl = 43 (+13,-12) micro K for the range l = 109 +/- 19;
the main uncertainty in this result arises from sample variance. We consider
that the contamination from the Galaxy is small. These results represent a new
determination of the CMB power spectrum on angular scales where previous
results show a large scatter; our new results are in agreement with the
theoretical predictions of the standard inflationary cold dark matter models.Comment: 11 pages, 11 figures. Web site at
http://www.jb.man.ac.uk/research/cmb/ Accepted for publication in MNRA
The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis
The results of the Tenerife Cosmic Microwave Background (CMB) experiments are
presented. These observations cover 5000 and 6500 square degrees on the sky at
10 and 15 GHz respectively centred around Dec.~ +35 degrees. The experiments
are sensitive to multipoles l=10-30 which corresponds to the Sachs-Wolfe
plateau of the CMB power spectra. The sensitivity of the results are ~31 and
\~12 microK at 10 and 15 GHz respectively in a beam-size region (5 degrees
FWHM). The data at 15 GHz show clear detection of structure at high Galactic
latitude; the results at 10 GHz are compatible with these, but at lower
significance. A likelihood analysis of the 10 and 15 GHz data at high Galactic
latitude, assuming a flat CMB band power spectra gives a signal Delta
T_l=30+10-8 microK (68 % C.L.). Including the possible contaminating effect due
to the diffuse Galactic component, the CMB signal is Delta T_l=30+15-11 microK.
These values are highly stable against the Galactic cut chosen. Assuming a
Harrison-Zeldovich spectrum for the primordial fluctuations, the above values
imply an expected quadrupole Q_RMS-PS=20+10-7 microK which confirms previous
results from these experiments, and which are compatible with the COBE DMR.Comment: 17 pages, 7 figures. Submitted to Ap
Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor
We report the synthesis and evidence of graphene fluoride, a two-dimensional
wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits
hexagonal crystalline order and strongly insulating behavior with resistance
exceeding 10 G at room temperature. Electron transport in graphene
fluoride is well described by variable-range hopping in two dimensions due to
the presence of localized states in the band gap. Graphene obtained through the
reduction of graphene fluoride is highly conductive, exhibiting a resistivity
of less than 100 k at room temperature. Our approach provides a new
path to reversibly engineer the band structure and conductivity of graphene for
electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR
- …